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Abstract—Smart contracts can be used for the fair
exchange of digital goods. A smart contract can escrow
the exchange where the receiver deposits the payment,
and the sender claims it by providing the goods. In
the case of misbehavior, the parties provide proof
on whether the received goods match the pre-agreed
description or not. In general, the description is assumed
to be the hash of the goods, and it is publicly known.
However, without trusting the description provided by
the sender, this assumption is not plausible for the
scenarios where the goods are uniquely created for a
specific receiver. To overcome the trust issue, sampling-
based exchange protocols have been introduced where
the parties use a sample of the goods as the description.
Yet, the existing sampling-based proposals suffer from
high on- and off-chain computational and storage costs.
In this paper, we present FairDEx: an efficient

sampling-based protocol that is suitable for the exchange
of unique goods. Our description protocol allows us to
achieve low on- and off-chain costs, which are indepen-
dent of the size of the goods. The off-chain part of the
protocol only utilizes highly efficient algorithms, namely
hashing and symmetric key encryption. To illustrate the
feasibility of FairDEx, we evaluate a research prototype
on the Ethereum test network. Our results show that
the cost of running FairDEx is around 0.6M gas for
reasonably large sample sets, which is 30% cheaper than
the state-of-the-art Ethereum-based proposals.

Index Terms—Fair Exchange, Blockchain, Smart Con-
tracts

I. Introduction

Imagine that you are going to buy digital goods exclu-
sively made for you. You accept to pay if and only if you
receive the exact goods you requested. To convince you,
the seller displays the hash of the goods that you can only
verify when you receive it. Would you trust that the hash
is calculated accordingly? In this paper, we address the
fair exchange problem of such scenarios where there is a
designated receiver of the goods that do not have public
information (e.g. hash) accepted or verified by third parties.
In fair exchange, a receiver is willing to pay a price

for the digital goods provided by a sender where either
both parties receive their expected output or none do. it
has been known that the fair exchange is not possible
without a Trusted Third Party (TTP), which can be very
costly or might not be available at all [1]. With the recent

developments in the blockchain technology, it is possible
to achieve a practical and cost friendly TTP.
A blockchain can escrow a fair exchange where the

receiver deposits the payment for the goods and the sender
claims the payment by providing the correct goods, and
if the sender misbehaves, the receiver gets the deposit
back. Here, the correctness of the goods is defined over
the description of goods that is accepted by both parties.
This process, also named as the claim-or-refund, can be
implemented with smart contacts. If there is a description
of goods agreed by both parties, the smart contract enables
them to create a conditional payment that is spendable
only by satisfying an input matching with the description.

There have been several works [2], [3], [4], [5], [6], [7], [8]
using a blockchain as a TTP if there exists a description
of goods that is accepted by the receiver. The commonly
used description, hash of the goods, does not give any
information about the goods, which is preferred from
the security perspective of the sender. However, from the
receiver side, it requires the trust to either (i) the sender,
(ii) other receivers of the same goods, or (iii) a TTP
that receives the goods and description and validates its
correctness [9]. Note that a validating TTP would be much
more expensive, if even exists, than an escrowing TTP
such as blockchain. It may require special expertise and
knowledge to validate the goods that might be possessed
only by a dedicated receiver of the goods.

An example scenario in real-life would be crowdsourcing
services like Amazon’s Mechanical Turk (MTurk). In the
machine learning community, researchers use MTurk for
manual data annotation or labeling for applications like
behavior signal processing, computer vision and so on [10],
[11], [12]. Here, annotators need to be ensured that they
will receive a payment for their work, and researchers
need to be ensured on the quality and correctness of
these annotations, which is a challenging problem [12].
Note that the researchers (receiver) cannot trust the
hash of annotations given by the annotators (sender) and
use Amazon (TTP) for only escrowing purposes. Thus,
the receiver either requests (i) the TTP to validate the
correctness of the goods (if a TTP has the expertise), and
the description is correctly calculated, or (ii) a sample
of the goods from the sender as a commitment that will



be used to generate the description. It is also possible to
extend the validation of goods into a consensus of third
parties where the goods are divided into several subgoods
and each of them are independently validated by several
third parties [13].

Recently, alternative exchange protocols have been intro-
duced that are suitable for scenarios where the description
of the goods is not available [14], [15], [16], [17], [18]. They
replace the description by a sample of the goods which
is jointly selected. These protocols are suitable for digital
goods that can be split into individually verifiable sub-
goods from which the description is generated. For example,
continuing to the data annotation use case, each data point
would be a sub-good.

The sampling-based exchange protocols work as follows.
First, sender shares the encryption of the goods as a
commitment of the goods. Then, sender and receiver jointly
select a small subset of the goods as a sample set, which
are decrypted by the sender for validation. Later on, the
receiver makes the payment conditional to the decryption
key(s) of the goods, which matches with the one(s) used to
decrypt the sample set. It can be seen that the decryption
key of the sample takes the role of description of goods.
However, the existing conditional payment mechanisms
are based on either (i) public key (or hybrid) encryption
schemes which are not efficient in off-chain computation or
(ii) symmetric key encryption schemes that require on-chain
publication of each key of the sub-goods.

In this paper, we present FairDEx that achieves the best
of two approaches of sampling-based exchange protocols:
it is based on symmetric key encryption which requires
low off-chain computation and storage cost, and it requires
publication of only a single (master) key on the blockchain.
FairDEx can be defined with two phases, namely ini-
tialization and claim-and-fund. The initialization phase is
executed off-chain where parties agree on the description
using a sample of the goods. In the claim-and-refund phase,
blockchain escrows the exchange regarding the description.

In the initialization phase, the sender encrypts each sub-
good with a different subkey and shares the encrypted data
with the receiver. Here, the subkeys are generated from a
master key using a simple key generation algorithm. Then,
sender and receiver jointly choose a subset of sub-good as
the sample, and the receiver provides the subkeys of them
to the receiver. Once receiver approves the sub-goods, the
description is generated from the sample subkeys.
In the claim-and-refund phase, the receiver creates the

conditional payment with the condition on the agreed
description and publishes the payment on the blockchain.
Later, as the sender reveals the master key matching
with description, the sender obtains the payment, and
the receiver obtains the goods. If the master key does not
match with the description, the receiver can create a proof
and reclaim the payment. The proof simply shows that
the master key does not produce at least a subkey that is
revealed in the initialization phase.

The advantages of FairDEx are summarized as follows:
• Description generation: FairDEx offers a jointly
generated description that removes the need for the
implicit trust in the description given by the sender.
This is essential in the scenarios where the description
is not public knowledge nor validated by a TTP.

• Practical implementation: We implemented FairDEx
as an Ethereum smart contract and demonstrate the
efficiency of our protocol in terms of gas. Finally,
we present a comparison of execution costs between
similar works. The source code of FairDEx smart
contract and client applications can be found at
https://github.com/ziyagenc/fairdex.

• Low off-chain cost: FairDEx has a simple architecture
and utilizes only efficient cryptographic primitives,
which are hashing and symmetric-key encryption
algorithms. This ensures low off-chain computational
complexity for both the sender and receiver and
enables FairDEx to run on resource-constrained
devices like smartphones.

• Low on-chain cost: In the optimistic case where parties
are both honest, only the master key is revealed to
claim the payment. In the pessimistic case, the proof-
of-misbehavior is demonstrated by using only the
subkeys. Our proof is independent of the size of the sub-
goods and logarithmically dependent on the sample
set, and the on-chain cost is around 0.6M gas for a
set of 10K samples.

II. State-of-the-art Fair Exchange Protocols

The pioneering work of Asokan et al. [19] defines a fair
exchange protocol between a sender S and a receiver R
with a description function Desc(·). S owns an item iS with
the description descS := Desc(iS) and R owns an item iR
with the description descR := Desc(iR). The goal of the
protocol is to exchange the items between parties.
A fair exchange protocol can be defined in two phases:

initialization and claim-and-fund. In the initialization
phase, parties agree on the exchange conditions such as
the description of the item and trusted third party (if
necessary). After this phase, it is assumed that S has
(iS , descR) and R has (iR, descS). In the second phase,
claim-and-fund, parties execute the exchange of items
where S obtains oS and R obtains oR. Parties check the
correctness of the obtained item using the description
function. In the case of a dispute, the description allows
parties to provide proof of misbehavior.
There are four security properties that a fair exchange

protocol should satisfy [19], [20], [6], [1], namely correctness,
timeliness, sender fairness and receiver fairness:
• Correctness: If no party misbehaves, upon termination,
R obtains oR such that Desc(oR) = descS and S
obtains oS such that Desc(oS) = descR.

• Timeliness: Every honest party eventually terminates.
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• Receiver Fairness: If honest R does not obtain any
information about iS other than descS , then S cannot
obtain any information about iR other than descR.

• Sender Fairness: If honest S does not obtain any
information about iR other than descR, then R cannot
obtain any information about iS other than descS .

A relaxed notion of fairness is defined as probabilistic
fairness where the chance of violating fairness is restricted
with an arbitrarily low probability [21], [22], [23].

It has been shown that fairness cannot be achieved
without a trusted third party [1]. In a minimal setting of
using TTP, named as optimistic fair exchange [24], a TTP
needs to be involved to solve the disputes between parties.
Here, parties prove their claims to TTP by comparing the
obtained output and the initially agreed description. Recent
proposals use a blockchain as a TTP since it is practical and
cost friendly. Now, we first present the exchange protocols
assuming the description is known in advance. Later, we
explain the protocols where the description is not available,
which is also the scenario assumed in this work.

A. Exchange protocols with known description
The recent exchange protocols use a blockchain as TTP

where the description match is automated via conditional
payments. To deploy and execute the conditional payment,
parties need to pay a fee to the miners of blockchain for
each on-chain operation and storage used. Therefore, a
naive way of publishing the whole of goods on-chain to
verify the description would require high fees. As the fee
would be proportional to the size of the goods, this solution
would not be feasible for the large-sized goods. To minimize
the cost, the state-of-the-art fair exchange protocols use
either Zero-Knowledge (ZK) proofs or proof-of-misbehavior
structure.
ZK proofs are used to check the condition on pay-

ment, also named zero-knowledge contingent payments
(ZKCP) [25], [26], [27]. The process of a ZKCP can be
summarized as follows: the sender shares the encrypted
goods with the receiver and provides ZK proof on the
commitment on the key and receives the payment while
revealing the commitment. The on-chain cost of a ZKCP
would be relatively low because only the commitment is
checked on-chain, which is usually a hash confirmation.
In proof-of-misbehavior based protocols [6], [28], [29], [30],
the payment condition is checked only in the case of a
dispute. By moving the condition check to only disputes,
in an optimistic case where parties are honest, they also
achieve low on-chain cost.

B. Exchange protocols without known description
One approach to overcome the lack of description is

having a third-party consensus mechanism that validates
the correctness of the goods [13]. The idea is splitting the
goods into sub-goods and asking the third-party validators
to vote for the correctness of each sub-good. Then, using
a consensus on the votes, the goods are validated or not.

However, having a third-party validator can be costly or
may not be available in scenarios where the goods are
unique or customized for a specific receiver.
As an alternative, sampling-based exchange proto-

cols [14], [15], [16], [17], [18] have been introduced where
the sender and receiver jointly generate a description from
a sample of the goods. This can be seen as a control
mechanism where the sender reveals a sample of goods for
verification. However, as the description is revealed to the
receiver, it should be enough to convince the receiver, yet
it should be infeasible to learn more about the goods. The
joint description generation can be seen as a gradual release
where the release is done only once. In a gradual release
[31], [32], [33] system, the exchange items are divided into
small sub-items and, at each step, parties exchange a sub-
item so that the advantage of a party would be negligibly
small. Applying the release mechanism on the entire goods
would have high communication complexity since the round
complexity is linear to the number of sub-items.
In [16], the authors present a basic sampling-based

exchange protocol on Bitcoin. The protocol works as follows:
First, the sender encrypts each sub-good with a different
symmetric key. Then, she commits to goods and encryption
keys by sharing the encryption of the goods and the hash
of each key with the receiver. Then, the parties sample
a subset of sub-goods, for which the sender provides the
corresponding encryption keys. After the receiver verifies
their correctness, he creates a conditional payment which
can be claimed only by providing the preimages of each
remaining key commitment. The protocol is simple and
works on Bitcoin since payments with hash conditions are
available in Bitcoin scripts. However, it is quite inefficient
since the payment condition is about the size of sub-goods.
In other words, the transaction size increases linearly with
the number of sub-goods.
In [14], the authors propose a novel sampling-based

exchange protocol that requires the publication of a single
key on the blockchain. The protocol exploits the fact that
ECDSA signature scheme [34] is a double authentication
preventing signature (DAPS) [35] where if two different
messages are signed with the same randomness, then the
signing key can be easily calculated from the signatures.
The idea is that the sender encrypts each sub-good with the
same public key. Then, some of the sub-goods are opened by
the sender as a sample where the receiver checks the validity
of the sub-goods and if they are all encrypted with the same
public key. After the validation, the sender signs a message
with a chosen randomness and sends it to the receiver.
Then, the receiver creates a payment transaction that
requires the sender to sign with the same public key and
the chosen randomness to receive the payment. Thus, once
the payment is claimed, the receiver can use two signatures
to compute the private key and decrypt the rest of the
sub-goods. However, since public-key encryption is not
efficient compared to symmetric ones, they suggest a hybrid
model where each sub-good is encrypted with a different
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symmetric key, and these symmetric keys are encrypted
with the public key and stored with the encrypted goods.

In [15], a racing attack is found in the protocol of [14]
where a malicious receiver can try to reclaim the payment.
The authors of [15] proposed an improved and secure
one that requires an additional signature of the sender
in the payment transaction. Moreover, their construction
has an additional transaction to provide instant finality
payment. In [18], the authors propose an Ethereum version
of a similar exchange protocol that utilizes the DAPS
idea. Finally, in [17], another Ethereum-based solution is
proposed, which replaces DAPS-like secret key recovery
with the explicit publication of the secret key and validating
its correctness with a decryption of sampled sub-goods.

III. Our Protocol
In this section, we present our exchange protocol

FairDEx. We assume a scenario where the goods x,
consisting of |x| sub-goods, i.e., x := {xi}|x|i=1, owned by a
sender S is exchanged for a price P paid by a unique receiver
R. We use a smart contract-based escrow mechanism, which
solves disagreements between parties. More specifically,
FairDEx is based on a conditional payment of price P
such that the payment is sent to S if R obtains the goods
x. Here, the condition is defined regarding the description
of goods descx, which is agreed by both parties, and the
conditional payment is created by smart contracts. As
shown in Fig. 1, we define FairDEx in two phases: (i)
initialization where the description is created and (ii) claim-
and-refund where the exchange and possibly disagreements
are handled. Before explaining our protocol, we present
the communication and security model and notations.

We assume there is an authentic and confidential channel
between each entity. Sender and receiver use their channels
for the off-chain interactions. Similarly, parties use the
channels with the blockchain to send and receive on-chain
interactions. We assume the synchronous network model
where each message sent between entities are received at the
beginning of the next round. A round defines the time unit
and all entities have access to the global time. Moreover,

S R
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Figure 1: Illustration of our protocol FairDEx. Honest and
malicious executions of the protocol are separated with (9a)-
(9b) and (10a)-(10b). All messages are sent in secure and
authenticated channels.

we assume that blockchain executes each valid request
received from the parties within an upper bounded number
of rounds. For simplicity, we omit this upper bound and
assume that honest parties take that into consideration.
There is no trust assumption between the sender

and receiver, and both parties agree on blockchain be-
ing the trusted third party (TTP). We assume that a
PPT(probabilistic polynomial-time) adversary can corrupt
parties at the beginning of the protocol. A corrupt party
follows the instructions given by the adversary, whereas
an honest party follows the instructions of the protocol.
Regarding the security of the blockchain, we assume that
no adversary can intervene in the process of the blockchain,
i.e., preventing the execution of a published smart contract.

In our protocol, we utilize two cryptographic primitives:
a cryptographic hash function and a symmetric encryption
algorithm. We use the random oracle model (ROM) to
model the hash function [36]. In ROM, hash functions
return a uniformly selected random value h ← {0, 1}µ
for each newly queried input string and return the same
value if the same query is answered before. We assume
the encryption algorithm Enc satisfies indistinguishability
under chosen-plaintext attack (IND-CPA) security [36].

Regarding notations, we use ‖ for concatenation of two
objects, := for defining an object, and ← for assigning a
value on an object. We use bold letters to represent a set
of elements such as a and each element is shown with an
index of the same letter, e.g., ai. a := {ai}Ni=1 denotes a
set of items ai’s for i = 1 to N and |a| refers to the size of
the set, i.e., |a| = N . Now, we explain the details of the
initialization and claim-and-refund phases of our protocol.

A. Initialization Phase
In this phase, S and R agree on the exchange conditions

and generate the description descx. First, parties agree
on the payment price of P, sample amount s, timelock
condition Tlock and objection time Tobj . Tlock and Tobj , as
explained later, are crucial for the timeliness property of
the protocol. Second, S shares the encryption of goods y
with R. Finally, parties jointly generate the description
descx using the encryption keys.
The subkey generation and encryption algorithms are

given in Algorithm 1. S chooses a random master key K
regarding the security parameter k and generates |x| sub-
keys using SUBKGEN(K, |x|). Each subkey ki is computed
by querying hash function H on input K concatenated with
index i. Then, S encrypts the goods x with the encryption
algorithm ENCRYPT where each sub-good xi encrypted
with Enc function using the corresponding subkey ki. Then,
S shares the encryption of goods y with R.

After S shares the encryption of goods y with R, parties
generate the description descx. The description is used as
a witness to ensure that S will provide the expected goods
x. More precisely, parties, first, agree on a description
descx, then they make the exchange of x and payment
conditioned on that. Then, in the case of a dispute, descx
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Algorithm 1 Subkey generation and encryption.
SUBKGEN(K, |x|)
1 : K← ∅
2 : for i ∈ (1, |x|) do
3 : ki ← H(K‖i)
4 : K← K ∪ {ki}
5 : return K

ENCRYPT(K,x)
1 : y← ∅
2 : for i ∈ (1, |x|) do
3 : yi ← Encki

(xi)
4 : y← y ∪ {yi}
5 : return y

allows parties to claim whether the received goods are the
same as the expected goods or not. This is checked by
running the description algorithm on the received goods.
Here, we define the description algorithm.
Our description algorithm can be seen as a random

sampling of subkeys. Initially, using Rand function, parties
jointly generate s distinct indexes, i.e., r := {ri}si=1 where
ri ∈ (1, |x|) and ri 6= rj for i 6= j. These indexes define
which subkeys are part of descx. S shares the corresponding
subkeys Ksamp := {kri

}si=1 with R. Then, R validates
the correctness of the subkeys Ksamp by decrypting the
corresponding indexes of y, presented by the Verify function.
Here, R checks each sub-good x′ri

:= Deckri
(yri

) for all
ri ∈ r, if the validation fails for any of the sub-goods, R
aborts the protocol. Otherwise,R generates descx using the
Merkle tree construction [37] where descx is the root of the
tree and Ksamp are the leaves. Moreover, R stores Ksamp

and r off-chain, which would be necessary in the case of
dispute. The description algorithm, DESC, is presented in
Algorithm 2 and the details of Rand and Verify functions
are given in Appendix A.

Algorithm 2 DESC(K,y, s)
1 : r← RandS,R(|y|, s)
2 : Ksamp := {kri |ri ∈ r} ← SampleS(K, r)
3 : if VerifyR(Ksamp,y)
4 : descx ← MTree(kr1 , r1, . . . , krs , rs)
5 : return (descx,Ksamp, r)

B. Claim-and-refund Phase
In the claim-and-refund phase, the exchange of goods and

payment is executed with on-chain transactions. According
to the agreed conditions in the previous phase, the smart
contract is published on the blockchain by the sender. The
pseudo-code of the contract is given in Fig. 2.
R first publishes the payment of price P conditioned to

description descx by using the function PayWithDescription.
When the function is invoked, the timeout value Tlock is
assigned on the payment, which prevents S to claim the
payment after time Tlock. More precisely, if the key is
not published within Tlock rounds, then R can claim a
refund of the payment by calling the RefundToReceiver
function. Once the payment is published, S checks the
correctness of the description. If the description condition
on the payment is not correct or the current time t is

contract FairDEx {

// Init. parameters: price, T_lock, T_obj, Sender and Receiver addresses

function PayWithDescription( _description)

only(receiver, value == price) { // called by receiver with price

description = _description; // Assign description

timeout_lock = now + T_lock;// Time condition to publish master key

}

function RefundToReceiver()

only(receiver, now > timeout_lock) {// called by receiver after timeout_lock

selfdestruct(buyer); // Transfer payment to receiver

}

function PublishMasterKey(_masterKey)

only(sender, now < timeout_lock) { // called by sender before timeout_lock

masterKey = _masterKey; // Assign the master key

timeout_obj = now + T_obj; // Time condition to object on master key

}

function RaiseObjection(r_i, k_i, mPath)

only(receiver, now < timeout_obj) { // called by receiver before timeout_obj

if (H(masterKey, r_i) != k_i) { // Check 1: the subkey is NOT correct

root = MProof(r_i, k_i, mPath) // Build Merkle Tree proof for description

if (root == description) // Check 2: the root equals to the description

selfdestruct(buyer); // Transfer payment to receiver

}

}

function TransferToSender()

only(sender, now > timeout_obj) { // called by sender after timeout_obj

selfdestruct(seller); // Transfer payment to sender

}

}

Figure 2: Pseudo-code of FairDEx smart contract.

passed the time condition, i.e., t > Tlock, then S aborts
the protocol. Otherwise, S publishes the master key K̂ on-
chain using PublishMasterKey. After the publication of K̂,
R is allowed to object on the received key in Tobj rounds.
If no party objects, after Tobj rounds, S receives the

payment by calling TransferToSender function. In the case
of an objection where R claims that the published key
K̂ does not match with descx, R creates a proof using
EVIDENCE algorithm given in Algorithm 3. The proof
simply shows that K̂ does not generate the sampled subkeys
Ksamp. Specifically, EVIDENCE returns a proof π which
consists of (i) a pair of ri and kri

for which the obtained
key K̂ is not generating the same subkey value (ii) the
Merkle tree path πpath that shows the pair is part of the
description descx. With a valid proof π, R can re-claim
the payment by invoking RaiseObjection function.

Algorithm 3 EVIDENCE(K̂, descx,Ksamp, r)
1 : π ← ⊥
2 : Parse: {ri}s

i=1 ← r, {kri}
s
i=1 ← Ksamp

3 : K̂← SUBKGEN(K̂, |x|)
4 : for i ∈ (1, s)
5 : if kri 6= k̂ri

6 : πpath ← MTreePath(kri , ri, descx)
7 : π ← (ri, kri , πpath)
8 : return π

C. Discussion on Design Rationale
Here, we discuss the design choices of the description

and subkey generation algorithm regarding the on-chain
cost-efficiency concerns.

The on-chain cost of our protocol heavily depends on the
description algorithm. A straightforward way of generating
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the description would be a sampling of goods regarding
the chosen index set r, i.e., {xri}si=1. Then, in the case of a
dispute, the proof size would be at least in the size of xi. In
other words, the storage and computational on-chain cost
would be proportional to the size of xi. To minimize the
on-chain cost for a possibly large set of goods x, FairDEx
uses the encryption subkeys K to define the description
descx. Here, the receiver R validates descx by decrypting
the corresponding sub-good xi for each sampled subkey ki.
Thereby, in case of a dispute, the blockchain does not have
to operate on the goods, instead, descx and SUBKGEN
algorithms are sufficient. Thus, the on-chain computation
cost is also independent of the size of the goods.

We utilize Merkle tree construction to create the descrip-
tion from Ksamp. The storage cost of descx would be only
the root of the tree. In case of a dispute, the computational
cost of the proof is a logarithmic number of hash operations
w.r.t. the size of Ksamp. To minimize the cost, R uses only
one incorrect subkey generated from the SUBKGEN as
proof. In other words, to prove the misbehavior, instead of
showing all subkeys of indices of descx, R can use a single
subkey kri

where ri ∈ r. This is because, for the correct
master key, all of the subkeys are supposed to be correctly
computed with the SUBKGEN algorithm.
Another crucial component of the on-chain cost of

our protocol is the SUBKGEN algorithm. Firstly, it is
important to note that the protocol does not require a
subkey generation algorithm. A naive solution would be to
encrypt each sub-good with a randomly generated subkey.
However, then, the sender needs to reveal all of the subkeys
on-chain to receive the payment. In our protocol, the
receiver only publishes the master key because all the
subkeys can be generated from the master key. Secondly,
to minimize the storage and computational on-chain cost,
SUBKGEN is supposed to have a small code size and it
should require low computation cost concerning the on-
chain computational cost of each arithmetic operation.
This is because, in the case of a disagreement, the proof-of-
misbehavior generated by EVIDENCE algorithm is checked
by running the subkey generation algorithm for some
specific subkeys. We achieve cost efficiency by using a
simple subkey generation algorithm, SUBKGEN, requiring
one concatenation with an index and one hash operation.

D. Security Analysis
In this section, we show that our protocol satisfies

the security properties of a fair exchange protocol given
in Section II: correctness, timeliness, receiver fairness
and sender fairness. Because of the limited space, we
briefly argue the correctness and timeliness properties. The
correctness property implies that if all parties honestly
follow the protocol, then they will obtain their expected
output. It can be seen that if S honestly generates the goods
and description, honest R would pay to the description
which can be claimed by S once the master key is revealed.

Lemma 1. FairDEx satisfies the correctness property.

The second property is timeliness meaning that for an
honest user the protocol eventually terminates. The time
conditions in the smart contract of FairDEx ensures the
timeliness property. Specifically, if R publishes the payment
at time t, then at time t+ Tlock, either the master key is
published or the payment is sent back to her account.
Also, if the published key is faulty, then R can claim the
payment back in Tobj rounds. Therefore, at the latest, on
time t + Tlock + Tobj , the protocol is terminated for R.
For S, since the key is not revealed until the payment is
published, he can abort at any time before that. Once the
payment is on-chain and he publishes the key at time t,
then he will receive the payment at most in time t+ Tobj .

Lemma 2. FairDEx satisfies the timeliness property.

Now, we show that FairDEx satisfies the fairness
properties: receiver fairness in Lemma 3 and sender fairness
in Lemma 4. Here, it is important to note that the sample
of goods does not violate the sender fairness given in
Section II because it is part of the description. However,
using a sample of goods as a description has two drawbacks:
(i) sender is not paid for the sample and therefore she
might be susceptible to attack of repetitive execution of
sampling; and (ii) the fairness of the receiver is probabilistic
and depends on the size of the sample set. The former
repetitive attack is not possible for our exchange scenario
since we assume that there is only one (unique) receiver
of the exclusive goods. For the latter, we show that the
probability of violating fairness can be made negligibly
small by increasing the number of samples.

Lemma 3. FairDEx satisfies the probabilistic receiver
fairness property. No adversarial sender A can violate the
receiver fairness with probability more than (1− p)s where
A does not follow the protocol for p · |x| of the sub-goods.

Proof Sketch. Receiver fairness implies that S does not
receive the payment of price P unless S provides x matching
with the description descx. In our case, descx is generated
over the master key K, and S shares the encrypted goods
y with R. Thus, the receiver fairness relies on S sharing
the correct y and publishing the correct K such that R
can decrypt and obtain x. In other words, an adversary
A violating receiver fairness implies that A obtains the
payment and R does not obtain (at least some of parts
of) x. Because of the conditional payment in FairDEx,
violation of fairness can only occur if A publish a master
key that satisfies the description yet it does not provide
all the correct subkeys for R. Particularly, the maliciously
generated sub-goods or their encryption keys are not part
of the description. Otherwise, R would abort the protocol
before sending the payment.
We now investigate the attack scenario where A does

not follow the protocol for p · |x| of the sub-goods. Here,
p is the probability of malicious execution for each sub-
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good. Note that since the sample set is randomly chosen,
the selection of the p · |x| sub-goods does not affect the
success probability of the attack. The success probability
of the adversary can be seen as the probability of randomly
selecting s non-faulty items from a set size of |x| where p·|x|
items are faulty. This is because A needs to share y before
the description is created, and, in the description algorithm,
parties jointly select a subset of y to be checked by Verify
function. Then, success probability can be formulated as

Pr[A(p) = 1] =
s−1∏
i=0

(
|x| − p · |x| − i
|x| − i

)
� (1− p)s. (1)

Lemma 4. FairDEx satisfies the sender fairness property.

Proof Sketch. Sender fairness implies that R cannot obtain
any useful information on x (other than descx) unless
S receives the payment. In other words, an adversarial
receiver A should not obtain x without the payment.
There are two cases we need to investigate: before and

after the payment is published on-chain. Firstly, before the
payment is published, A should not be able to obtain more
information on x other than descx. A has the encrypted
goods y and sampled subkeys Ksamp. Note that since the
encryption algorithm Enc satisfies (IND-CPA) security, A
cannot learn any information from y unless he obtains the
subkeys. Thus, we need to ensure that A cannot obtain
the rest of the subkeys. This relies on the one-wayness of
the SUBKGEN algorithm. In other words, given a subset of
subkeys ki’s, it should be infeasible to obtain the master
key K. This is satisfied by using the hash function H in
the random oracle model (ROM) for the subkey generation
algorithm: ki := H(K‖i). More precisely, given H(K‖i) and
i it is infeasible to extract the master key K.
Secondly, after the payment is published on-chain, A

should not claim the payment. This is satisfied by the
smart contract on the blockchain because the EVIDENCE
algorithm will return ⊥ for the correct key K and the
payment is sent to S. Here, it is important to remember
that if the on-chain payment consists of a faulty description,
S would not provide the master key K. As explained
previously, without K, A cannot obtain the goods.

Note that our protocol satisfies probabilistic fairness
for the receiver, which is characteristic in sampling-based
protocols. Now, we discuss the rational behavior of the
sender and show that it is beneficial for S to follow honest
behavior. Let us investigate the rational behavior over the
example scenario of data annotation. Here, we formulate
the expected gain of a rational S with respect to the
honest workload, i.e., the amount of correctly generated
sub-goods. Since the payment amount is fixed and executed
if R agrees on the description, we compute the gain by
multiplying the saved workload and the chances of not
getting caught. Assume S generates n-out-of-|x| of the
annotations incorrectly. The workload saved by S from not

doing the annotations is n and the proportional gain is
|x|
|x|−n , whereas the chance of not getting caught by R is∏s−1
i=0

(
|x|−n−i
|x|−i

)
, which is less than ( |x|−n|x| )s for any n > 0.

The expected gain is less than ( |x|−n|x| )s−1, whereas for the
honest S it is equal to 1. Thus, it is not rational to violate
the protocol for any number of sub-goods.

IV. Performance Evaluation
In this section, we evaluate the efficiency of FairDEx.

We begin by analyzing the complexity of the initialization
phase of our protocol, in which messages are exchanged off-
chain. Next, the on-chain cost of our protocol is measured
by running experiments on the blockchain environment.
We analyze the on-chain cost in two scenarios, namely
optimistic and pessimistic. In the optimistic scenario, both
parties act honestly, whereas, in the pessimistic scenario,
one of the parties deviates from the protocol.

a) Test scenario and parameters: We investigate a
scenario where x is digital goods of size N bytes and
contains |x| sub-goods where each sub-good xi can be
individually verified by the receiver. Our protocol can be
used whenever |x| and s fits the security margin declared
by the parties. In our experiments, the minimum number
of sample size is s = 64 and the probability of a sub-good
being corrupted, p, is set to 0.05. With these parameters,
Eq. 1 yields that the probability of fooling the receiver
is lower than 0.3% in our experiments. It is worth noting
that the upper bound of the probability given in Eq. 1 is
independent of N and |x|.
The timeliness is checked by calculating the difference

between block timestamps and comparing to the Tlock and
Tobj . In our experiments, both Tlock and Tobj are set to 10
minutes. In real-world applications, parties can determine
these values according to their convenience.

b) Implementation: Our prototype is implemented in
Solidity language and runs on Ethereum blockchain [38],
which is the most commonly used smart contract platform.
Ethereum Virtual Machine (EVM) provides an interface
to keccak256 hash function, of which our prototype takes
benefit. For concatenation, we utilized encoding functions
available in Solidity.
Client applications are implemented in Python 3 and

use Web3.py [39] library to interact with the blockchain.
Sender and receiver programs derive keys using SHA3 and
encrypt/decrypt goods with AES.

c) Communication Complexity: In the off-chain part
of our protocol, r can be generated in 3 rounds (see
Appendix A) of which, the last round can be used to send
Ksamp. Then, one more round is required to transfer descx,
so that it makes 4 rounds in total. The protocol continues
with the on-chain part, which can be executed in 3 rounds,
where messages are exchanged with the blockchain.

d) Off-chain Computation: In a naive Python imple-
mentation of Algorithm 4 given in Appendix A, generating r
and key derivation complete in nanoseconds. Clients achieve
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Figure 3: Execution costs of FairDEx with different description
sizes.

323.41 MB/sec encryption/decryption throughput on a
computer with 8-core Intel i7 CPU clocked at 3.6 GHz. On
a significantly less powerful ARM Cortex-A53 CPU clocked
at 1.4 GHz, clients can throughput 4.47 MB of data per
second. The measurements demonstrate that FairDEx can
be used on various devices, including personal computers,
smartphones, and smart TVs.

A. Benchmarks
In the domain of Ethereum smart contracts, one of

the most important performance criteria is the cost of
execution, which is measured in gas. Each operation, such
as the addition of two variables, taking the hash of a string
or storing some data on the chain, requires a predefined
gas cost, which is determined by the miners.

To measure the cost of FairDEx, we deployed the smart
contract and run on Ropsten Network, the primary testnet
of Ethereum. Deployment constitutes the main cost of
running our protocol which takes about 427043 gas. For
the execution, our protocol follows one of the two paths
depending on the behavior of the parties. We use the term
optimistic execution for the case where both sender and
receiver follow the protocol steps honestly. In contrast,
pessimistic execution is used for the case where any of
the parties might behave maliciously. It is reasonable to
expect that the pessimistic case would cost more because
FairDEx makes a ruling after the receiver complains
about the received goods. We analyze the cost of each
case separately. Execution cost is calculated by summing
the fees of calling the functions in the deployed contract.

a) Optimistic Case: In this case, FairDEx does not
perform any verification operations. PayWithDescription,
PublishMasterKey, and TransferToSender functions are exe-
cuted and they perform merely data transfer and memory
assignments. The size of written storage is always constant
and takes up 96 bytes, therefore, the total cost of execution
is independent of the size of the goods when parties honestly
follow the protocol. In our measurements for the optimistic
case, we found that deploying and running FairDEx cost

in total 593647 gas. For a gas price of 40 Gwei, it is
approximately 0.0237 ETH, which equals to $58.18 for
an exchange rate of 1 ETH = $2455. Average prices for
gas and ETH are both taken from [40] for April 26, 2021.

b) Pessimistic Case: In the pessimistic execution
where one of the parties is malicious, the dispute mechanism
is triggered. If the receiver is malicious and does not pay or
pay to a faulty description by invoking PayWithDescription,
the sender would not continue to the protocol and only
the deployment cost is paid. In the case where the sender
provides faulty goods by publishing a faulty master key,
the receiver invokes the RaiseObjection function. As the
latter case covers the cost of the first one, we calculate the
pessimistic cost where the sender is being malicious.
The function RaiseObjection takes the evidence from

the receiver, computes the description, and compares
the published description. This is the only place where
FairDEx performs computation, which is merely log s+ 1
number of executions of keccak256 in addition to a single
equality comparison. The extra cost can be reduced to
formula as

(log s+ 1) · CH + CEQ, (2)

where CH is the cost of single call to keccak256 and
CEQ is the cost of equality comparison. Eq. 2 states that
the cost of pessimistic execution increases linearly as the
size of description exponentially grows. Fig. 3 shows the
total cost of optimistic and pessimistic runs of FairDEx.
The cost of pessimistic execution is around $59.41 for a
large description set of 16K samples. Fig. 3 confirms our
observation about the gas cost estimation. Also, as in the
optimistic case, the number of hash computations, therefore
the cost of execution of RaiseObjection is independent of
the size of the goods, N , and |x|.
B. Performance Comparison with Closely Related Work

Here, we compare the performance of our protocol with
closely related works given in Section II-B. Note that [13]
is not included in the comparison since it is based on third-
party validators, which is not a sampling-based protocol.
Nonetheless, its on-chain cost on Ethereum is greater than
3.4M gas for the minimal scenario, which is 5x higher than
ours. The comparison of the rest is given in Table I that
consists of both on-chain and off-chain performances.

a) On-chain: We use the metrics of transaction size
for Bitcoin and gas cost for Ethereum blockchain. In
Bitcoin-based solutions, [14] and [15] have constant size
transactions as they only require to publish the condi-
tional payment on the secret key. Whereas, [16] poorly
performs because of the transaction conditioned to each
symmetric key of sub-goods (other than the sampled ones).
In Ethereum-based solutions, our protocol outperforms
because of the simple structure and usage of only cost-
friendly operations like hashing. In addition, our protocol
does not require the validation of the master key on-chain
unless there is a dispute, and a dispute can be solved by
only a couple of hashing operations.
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Table I: On-chain and off-chain performance comparison of sampling-based exchange protocols

On-chain Off-chain
Work Blockchain On-chain cost1 Based on Encryption Computational Cost Storage Cost
[14] Bitcoin 2 txs, Constant size DAPS Hybrid O(|x|)(PKE+SKE) O(x) +O(|x|κ)
[15] Bitcoin 3 txs, Constant size DAPS Hybrid O(|x|)(PKE+SKE) O(x) +O(|x|κ)
[16] Bitcoin 1 tx, O(|x|) size Hash Symmetric O(|x|)(SKE) O(x)

[17] Ethereum Not available2 Re-encryption Hybrid O(|x|)(PKE+SKE) O(x) +O(|x|κ)
[18] Ethereum ∼ 930 K gas DAPS Hybrid O(|x|)(PKE+SKE) O(x) +O(|x|κ)
Ours Ethereum 594 +O(log(s)) K gas4 Merkle Tree Symmetric O(|x|)(SKE) O(x)
1 The cost metric is transaction size in Bitcoin, and gas cost for Ethereum.
2 The construction is similar to [18] with an additional on-chain encryption. Thus, the cost is expected to be greater than 930K gas.
3 The minimum possible on-chain cost, which excludes the validation cost paid to the validators.
4 For pessimistic case, our protocol has additional MT check which is logaritmic wrt sample set size. As shown in Figure 3, the
total gas cost is less than 606K even for a quite large sample set of 10K samples.

We compare our solution with Bitcoin-based ones with
constant transaction size. The cost of executing our pro-
tocol is less than $60 even in the pessimistic execution.
For Bitcoin transactions mined within the next 30 mins on
April 26, 2021, the cost can be estimated with 122 satoshis
per byte, and an average transaction of size 250 bytes
would cost $16.17 [41]. In [14], there are two transactions
with sizes of 197 and 397 bytes, which would cost around
$38.4. In [15], the authors added an additional spending
condition to the transaction in [14] to fix a security attack.
Also, they have an additional transaction to improve the
latency of the protocol, which would cost around $50 in
total. Regarding the prices on April 26, 2021, our protocol
costs 20% more than the secure Bitcoin-based solution
given in [15]. However, it should be noted that the fiat
comparison suffers from high fluctuations in Bitcoin and
Ethereum currencies. For example, the transaction prices
of April 21, 2021 are almost double of April 26, 2021 [41].

b) Off-chain: The solutions using a hybrid encryp-
tion [14], [15], [17], [18] mechanism require encryption of
the goods with a symmetric key (depicted by O(|x|) SKE)
and additional encryption of these keys with a public key
(depicted by O(|x|) PKE). This additional encryption cost
is also reflected in the storage cost, which is depicted by
O(|x|κ) where κ is the size of a symmetric key. In this
manner, our protocol, together with [16], requires only
symmetric key encryption of the goods and achieves the
best results regarding computational and storage costs.

V. Conclusion

Almost a decade ago, fair exchange protocols were not
considered feasible because of the lack of the availability of
a third party. The developments in blockchain, in particular
smart contracts, removed this shortcoming. If the descrip-
tion of goods is known in advance, then smart contracts
can be used to create a conditional payment regarding the
description. Otherwise, sampling-based exchange protocols
can be used to generate the description. The existing

sampling-based proposals require either high on-chain cost
or off-chain computational and storage costs.

In this paper, we presented FairDEx that achieves low
on-chain and off-chain costs. Thanks to our description
procedure, it requires low cost to execute FairDEx on
the blockchain and small computational power to perform
off-chain operations. More specifically, the on-chain cost
of FairDEx is very low and independent of the size of
the goods, for both optimistic and pessimistic executions.
Ethereum implementation of our protocol gives that the
cost of running FairDEx is around 0.6M gas even for
the pessimistic case and a sampling set of size 10K.
Moreover, the off-chain part utilizes merely hashing and
symmetric-key encryption algorithms, which enables high-
speed computations with low resource consumption. The
results show that FairDEx can be executed on resource-
constrained devices like smartphones and smart TVs.
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Appendix
A. Rand and Verify Functions

Rand function starts with sender choosing a random value
rS and computing the commit hS := H(rS) where H is a
secure hash function. Sender sends hS to the receiver. Next,
receiver generates rR and sends it to sender. Then sender
opens rS , i.e., sends rS to receiver. Having the random value
of the other party, parties obtain joint random number
r = rS ⊕ rR. At this point, if one of the parties misbehaves
such as by not opening the commitment, the other party
aborts and stops the exchange. Otherwise, the randomness
r is used to generate s distinct indexes r := {ri}si=1 where
ri ∈ (1, |x|) using Algorithm 4.

Algorithm 4 Generate random indexes.
1: function GenIndex(r, |x|, s)
2: r = ∅
3: R← {} . Initialized as empty array.
4: for i ∈ (1, |x|) do
5: hi ← H(r || i)
6: Append(R, hi) . hi is the last element of R.
7: RS ← SortIncreasing(R) . Sort elements of R.
8: for i ∈ (1, s) do
9: h← ElementAt(RS , i) . Get ith element of RS .
10: ri ← IndexOf(R, h) . Find index of h in R.
11: r = r ∪ ri
12: return r

In Verify function, R decrypts the goods for correspond-
ing indexes of r. Then, check if the sub-good is correct
or not. If all of the sub-goods are correct, then it returns
true. Otherwise, it returns false. For the example scenario
of manual data annotation, R would check whether each
data point of r has the correct annotation or not.
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