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ABSTRACT
To achieve its goals, ransomware needs to employ strong encryp-
tion, which in turn requires access to high-grade encryption keys.
Over the evolution of ransomware, various techniques have been
observed to accomplish the latter. Understanding the advantages
and disadvantages of each method is essential to develop robust
defense strategies. In this paper we explain the techniques used by
ransomware to derive encryption keys and analyze the security of
each approach. We argue that recovery of data might be possible if
the ransomware cannot access high entropy randomness sources.
As an evidence to support our theoretical results, we provide a
decryptor program for a previously undefeated ransomware.
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• Security and privacy→Keymanagement;Malware and its
mitigation;
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1 INTRODUCTION
“Many of your documents are no longer accessible because they
have been encrypted. Maybe you are busy looking for a way to
recover your files, but do not waste your time. Nobody can recover
your files without our decryption service.”

This is the opening message of WannaCry, a cryptographic ran-
somware that become known to the general public inMay 2017 after
having encrypted documents on thousands of computers around
the world. The message is crafted to intimidate. Since the ultimate
goal of a ransomware is to collect money, the message should sound
both convincing and threatening to a victim, letting him/her ponder
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the pros to pay up a well calculated, but not huge, sum of cryp-
tocurrency against the cons to loose irremediably access to valuable
documents. Whatever the decision the message is clear: there is
no other way out. One question emerges naturally: is it true that a
victim is left only with this “pay or perish” dichotomic choice?

Let us assume that the ransomware has really encrypted the
files, that is, let us consider out of scope those malware called
scareware and that just pretend to have encrypted the victim’s
documents. As cryptographers we know that decrypting without
the key can be indeed an intractable problem if the key used for
the encryption is unpredictable, that is, both strong and secret. But
we also know that obtaining good keys and keep them safe are
hard tasks; even good cryptographic applications can fail to do it
well [1]. The situation should not be better for ransomware and we
expect some implementation be vulnerable exactly in the way they
try to cope with those hard tasks.

In this paper we study the various strategies that current ran-
somware follows to acquire cryptographically strong encryption
keys and to keep them safe from anti-malware, and we comment on
how good or bad those strategies are. Wherever they even partially
fail, we discuss whether and how the encrypted files can be recov-
ered. In this way, we reveal when and for which ransomware the
threatening statement “nobody can recover your file” really holds
true and when instead it sounds more threatening than it really is.

The rest of the paper is structured as follows. §2 discusses how
ransomware works in general and classify the methods of acquiring
encryption keys. Previous works related to our study is summa-
rized in §3. In §4, key-oriented protection systems are reviewed.
The main result of our analysis is presented in §5. In §6, we demon-
strate evidence from real-world examples to support our result
and provide a decryptor for a ransomware sample which was not
available previously. §7 discusses the future works and concludes
the paper.

2 BACKGROUND
2.1 Generic Ransomware Functionality
We focus only on the cryptographic aspects: other malicious be-
haviours such as spreading over the network and altering OS config-
uration is out of the scope of this paper. That said, after infection, a
ransomware commences preparation phase, in which it enumerate
the files it intends to target target and start acquiring or building
the encryption keys. Next, the ransomware proceeds to encrypt
files. Once the encryption finishes, it notifies the victim and delivers
the ransom demand. This operation flow is depicted in Fig. 1.
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Figure 1: Operation flow diagram of a ransomware from the
cryptographic point of view.

To encrypt victim’s files, ransomware usually employs a hybrid
cryptosystem, that is, an encryption scheme consist of a combi-
nation both symmetric and asymmetric algorithms. In order to
understand why ransomware authors need to use hybrid cryptosys-
tems, one needs to observe the following facts:

• Encrypting files with solely asymmetric algorithms is a resource
intensive task. This might introduce the risk of being detected
as high CPU usage for a long time could trigger anomaly detec-
tion systems. Therefore, ransomware must utilize a symmetric
algorithm to encrypt files.

• Ransomware needs to use a unique key for each target to prevent
victims helping each other [7]. In a mass infection, managing
the keys with solely symmetric primitives would not be scalable.
Therefore, use of an asymmetric algorithm is required while
maintaining the key management of a ransomware campaign.

2.2 Acquiring Encryption Keys
To achieve long term success, ransomware needs to exercise strong
encryption, which requires to use good encryption keys. During the
evolution of ransomware, various techniques have been observed
to accomplish this task.

One strategy of acquiring the public keys is to fetch them from
command-and-control (C&C) servers as CryptoLocker does [18].
Ransomware can also obtain file encryption keys from these C&C
servers, however, usually these keys are derived from the out-
puts of Cryptographically Secure Pseudo-Random Number Gen-
erator (CSPRNG) functions, e.g.,WannaCry [19]. Another option
is to utilize a non-cryptographic Pseudo-Random Number Gen-
erator (PRNG) to seed key derivation algorithms. Programming
languages in fact provide PRNG functions for developers to uti-
lize in various domains. For example, a ransomware can call rand

function in C standard library or use System.Random class in C# lan-
guage to obtain pseudo-random numbers. This is more frequently
observed in samples developed in C# language such as NegozI [20]
and Rush/Sanction families [13]. Lastly, ransomware authors might
embed the encryption keys into the malware body before spreading
it, e.g., Cryzip [15]. These keys can be used directly to encrypt files
and thus removing the need for calling any PRNG.

Using the observations above, we identify the following meth-
ods that are used by the current generation of cryptographic ran-
somware to obtain encryption keys:
M1 Derive keys from CSPRNG outputs
M2 Fetch encryption keys from remote servers
M3 Utilize non-cryptographic PRNG to generate secrets
M4 Use secrets embedded into binary executable

3 RELATEDWORK
Acquiring encryption key is a sine qua non task for a cryptographic
ransomware, so discussed in detail in the technical analysis sections
of previous research. In one of the earliest works on ransomware,
Gazet [7] reverse engineered samples from a few families, including
Gpcode, and examined the key derivation methods. Later, Kharraz
et al. [10] performed an analysis of 1359 samples from 15 families
which reports, among other findings about ransomware, different
techniques used for key generation. In addition, Cabaj and Mazur-
czyk proposed a dynamic blacklisting system which tries to prevent
delivery of public keys by disrupting the communication with C&C
servers to mitigate ransomware [2]. In another study, Craciun et
al. [3] analyzed how recent ransomware variants evolved, taking
into account their key management schemes. That said, these works
treat the functional aspects of the key acquiring task and focus on
the evolution of the ransomware.

Apart from the scientific reports, several protection systems
are proposed in the literature, approaching to the ransomware
problem by focusing on the encryption keys. We describe these
systems and discuss their pros and cons in §4. In addition, Cabaj and
Mazurczyk analyzed the key acquiring scheme used by CryptoWall
and proposed a dynamic blacklisting system which tries to prevent
delivery of public keys by disrupting the communication with C&C
servers [2].

Possibly, the closest work to our research is the taxonomy of key
management models of ransomware, presented by Bajpai et al. [6].
The authors introduce a classification for ransomware based on the
employed key management architecture and evaluate the potency
of each category. The present work differentiates from the previous
one by focusing on the security of key acquiring methods, and offers
a recovery tool by exploiting a weakness, thereby providing both
theoretical and practical contributions.

4 KEY–ORIENTED PROTECTION METHODS
Among the key acquiring methods, M1 deserves particular attrac-
tion as it is the de facto technique for deriving encryption keys
and other cryptographic materials. Consequently, there have been
several defense techniques to ransomware from including this pow-
erful weapon to its arsenal.

Escrowing Keys. Key escrow is the practice of storing keys and
cryptographic materials with the purpose of using at a later time.
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In the context of ransomware, key escrow implies to capture the
secret keys and other parameters while the ransomware is execut-
ing an encryption algorithm to recover the files after the attack.
PayBreak [12] implements this approach by hooking the crypto-
graphic functions provided by operating system (OS) and third-
party libraries. The hook functions obtain the parameters of said
Application Programming Interfaces (APIs) and store in a secure
key vault. These values are used to recover the encrypted files af-
ter a ransomware attack. On the other hand, as the authors state,
ransomware can evade PayBreak by statically linking third-party
libraries and obfuscating the executable code. Even in this case,
PayBreak would log the CSPRNG outputs.

Replacing CSPRNG. Replacing CSPRNG functions with a back-
doored PRNG, enables defences to reproduce the outputs obtained
by applications that called these functions. Kim et al. proposed such
a strategy [11]. They replace the CSPRNG of the host system with
a user-defined number generator. Called deterministic random bit
generator (DRBG), this PRNG contains a trapdoor which allows the
user to retrieve the outputs of DRBG at a given time. The trapdoor is
a secret value, preferably stored in an external device and assumed
to be accessible only by the user. If a ransomware attack occurs,
the trapdoor value is used to reproduce the outputs of DRBG, thus
derive the encryption keys used by ransomware and recover the
files. This defence can bypassed by finding other ways than calling
CSPRNG to derive keys.

Controlling CSPRNG. Obtaining true randomness is a difficult
task, so modern operating systems expose dedicated APIs to serve
for this purpose. These built-in functions are called CSPRNG and
are of limited numbers. Combining this fact with the techniques that
OSs provide to hook APIs, it becomes feasible to control CSPRNGs.
This is what a new anti-ransomware, UShallNotPass [8], does
to prevent unauthorized applications from using CSPRNG func-
tions. It intercepts calls made to CSPRNG of host system and allows
access only to a whitelisted processes, terminating all the others.
Finding an alternative randomness source may allow to evade this
protection.

5 MAIN RESULT
We now analyze the security of the four methods presented in §2.
In our discussions, we will refer to the following categorization of
the key-related weaknesses:

W1 Reproducibility of the keys: files might be decrypted by re-
producing the encryption keys used by ransomware.

W2 Failure to derive keys: ransomware might fail to derive keys
due to an access control over CSPRNG of the host system.

W3 Interception of transportation: a defense mechanism on tar-
get system might be able to prevent the ransomware from
acquiring keys over a network location.

W4 Guessable encryption keys: finding the encryption keys
might be feasible by exploiting a cryptographic weakness in
the scheme used by ransomware.

W5 Extractable secret values: reverse engineering the executable
will enable extracting the secrets to restore the files.

5.1 Deriving Keys from CSPRNG Outputs
As we described in §4, several different approaches exist in the
literature to protect CSPRNG It can be seen that if one of the systems
in §4 is active on the target machine at the time of attack, W1 and
W2 can be exploited against a ransomware that belongs to the
category M1, and victim’s data can be restored.

5.2 Using Embedded Secrets
While embedding the keys and other cryptographic materials into
the executable (M4) seems to be the easiest method from the de-
velopment point of view, extracting these secrets would enable
reversing the actions ransomware performed, e.g., building a de-
cryptor which would defeat that ransomware campaign. In fact,
early ransomware (e.g., Cryzip [15]) used this approach which
brought about NoMoreRansom Project, providing decryptors for
several ransomware families. Furthermore, the practice of using em-
bedded keys can still be seen in recent samples1 and easily thwarted.
Ransomware might try to destroy itself to keep the confidentiality
of the keys, however, the binary executable might be re-obtained
from the intrusion point. Therefore, we conclude that if the ran-
somware authors build their scheme on a secret in the malware
body, failure of their campaign is inevitable.

5.3 Utilizing a Non-cryptographic PRNG
Another technique that ransomware might employ is to derive keys
from a non-cryptographic PRNG (M3). For example, the key gener-
ation algorithm of NegozI [20] and Rush/Sanction [13] families is
demonstrated in Listing 1.

public static string GetPass(int x)
{

string str = "";
Random random = new Random();

while (str.Length < x)
{

char c = (char) random.Next(33, 125);
if (char.IsLetterOrDigit(c))
str += c;

}

return str;
}

var password = GetPass(new Random().Next(30, 50));

Listing 1: Password generation method used by NegozI and
Rush/Sanction ransomware families.

In this strategy, ransomware families restrict themselves to build
a password using only digits and characters. The reason is that vic-
tims may not be able to type non-printable characters (like control
sequences) when they are asked to enter the password for decryp-
tion. This would cause the password to be built up from a low
entropy set. In order to fix this shortcoming, ransomware authors
usually select a password in the range of 30 to 50 characters. The
total entropy (in bits), e , of a password can be computed as:

e = log2C
ℓ (1)

1https://malwareless.com/remove-rarucrypt-ransomware-virus-removal-guide

https://malwareless.com/remove-rarucrypt-ransomware-virus-removal-guide
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where C is the size of the character set and ℓ is the length of the
password. Using Eq. (1), the entropy of the passwords returned
from GetPass can be estimated as follows:

log2 62
30 ≤ e ≤ log2 62

50

As a result, the entropy of the passwords would lie in 178.62 bits
and 297.71 bits, and cracking them using brute-force would not be
feasible. However, this approach has a critical flaw which signifi-
cantly reduces the complexity. Non-cryptographic PRNGs require a
seed value, which, if given again , causes the PRNG to produce the
same output. If the seed is a static secret, then it can be extracted as
described in the previous subsection and the same output stream
can be generated. Alternatively, the PRNG could be fed by the sys-
tem time which could be accurately estimated by forensics tools
allowing to generate the same outputs. Trying to obtain more en-
tropy from other sources (monitoring mouse activity or keyboard
inputs) would trigger the anti-virus solutions, i.e., the malware
would be marked as a keylogger and neutralized. We elaborate on
this weakness in §6.

5.4 Fetching Keys from C&C Center
Different from previous approaches, ransomware might choose
to download encryption keys from C&C servers [14]. Especially,
samples which utilize asymmetric algorithms prefer this method
as it allows the private keys to remain at attacker’s side which
provides a better security for ransomware. However, this requires
the C&C server to be reachable from the victim’s machine at the
attack time. Based on this fact, Cabaj and Mazurczyk [2] proposed a
real-time network monitoring system which dynamically blacklist
C&C server’s IPs to block communication between the victim and
the attacker (W3).

Observation on Usability: Choosing M2 as a primary method re-
quires a fail-safe mechanism for acquiring encryption keys. For this
reason, M1, M3, or M4 are employed as a backup strategy. Indeed,
Spora and Sage families, in addition to new versions of Locky and
Cerber, contain an offline encryption mode by default [17].

5.5 Discussion
In the light of our analysis, each method presented in §2 has a
weakness that can be exploited to combat ransomware. Table 1
shows each methods against the corresponding weaknesses.

Table 1: Weak points of the key acquiring methods.

Method Weakness

W1 W2 W3 W4 W5

M1 • •

M2 •

M3 • •

M4 •

We argue that by placing the correct countermeasures on the host
system before infection, recovery of the files might be feasible. In
particular, if CSPRNG of the host system is protected, failure of the
ransomware attack is inevitable. In other words, if the randomness

comes from a weak source, i.e., not cryptographically secure keys
are likely to be predictable and can be found by brute-force. Thesis 1
systematically states this argument:

Thesis 1. Let R be a ransomware sample which employs a hybrid
scheme for encrypting victim’s files. If R cannot access the CSPRNG
of the victim’s computer, then R cannot obtain good encryption keys.
Recovery without paying the ransom may be possible.

Argument. Since R uses a hybrid cryptosystem, it employs a
symmetric encryption algorithm, say E, to encrypt victim’s files.
To use in this algorithm, ransomware also needs at least one secret
key K. This observation sits in the central of our logic.

We accept the premise in the thesis and assume that R cannot
use the method M1 to obtain K. In addition, M2 can be neutralized
as it has the weakness W3. Moreover, M3 and M4 cannot be used to
obtain secure keys due to the weaknesses W4 and W5, respectively.
As a result, R cannot acquire secure encryption keys.

Now we argue that the recovery of the files without paying the
ransommight be possible. In order to generate K, R might use M3 or
M4, as M1 is not available and M2 is blocked. If R uses M3, i.e., uti-
lizes a non-cryptographic PRNG to seed its key derivation function,
the seed would be guessable which allows the files to be restored.
R can also try to obtain the seed values from the environment and
mix them, but this would trigger the anti-virus systems. Therefore,
the PRNG will be used with a predictable seed and its outputs can
be reproduced. Finally, R can employ M4, i.e., use the key K and
other cryptographic materials embedded into the malware body. In
this scenario K can be extracted by reverse engineering methods.
Using packers or other binary protection techniques can only make
the process take longer.

As a result, R cannot obtain strong encryption keys and it is likely
that original files can be restored without paying the ransom. ■

6 REAL WORLD EXAMPLES
We now provide empirical results obtained from real-world ran-
somware samples to support at least with some evidence the argu-
ment we uphold for Thesis 1.

We obtained malware samples by performing a search on Hy-
brid Analysis2 with the tags ransomware, cryptovirus and file-type
substring PE32 executable (console). Next, we prepared a test envi-
ronment to confirm the collected samples are active ransomware,
following the previous work [8].

For automated testing, we utilized the Cuckoo Sandbox3 open
source automated malware analysis system. We had UShallNot-
Pass running in passive mode to log CSPRNG usage during the tests.
Active ransomware samples are identified by checking the hashes
of decoy files after each test. Among the them, we picked a sample
which does not call CSPRNG APIs and does not have a decryptor
available. To identify the sample, AVClass tool [16] is employed,
which determines the family name by performing plurality vote on
the labels assigned by AV engines. We obtained these labels from
VirusTotal4, and found that the sample5 is a Crypren variant.

2Hybrid Analysis, https://www.hybrid-analysis.com
3Cuckoo Sandbox, https://cuckoosandbox.org
4VirusTotal Intelligence, https://www.virustotal.com
5SHA-1 hash of the sample is 18e49f01a7493ea56f520ea5cbaf43ca2daca71c.

https://www.hybrid-analysis.com
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Using CFF Explorer6, we detected that the ransomware is written
in C# language. Finally, to analyze the sample, we decompiled the
executable binary into source code using dotPeek7 tool.

6.1 Extracting Secret Phrase from Binary
The Crypren sample analyzed in this paper performs various ma-
licious operations before encrypting the victim’s files, including
deleting Volume Shadow Copy Service (VSS) backups quietly, im-
personating another user, and creating a new Windows account.
The Main function of the sample which is depicted in Listing 2.
We analyze the code sections, which perform key generation and
encryption of files.

public static void Main (string[] args)
{

...
string password = Program.GetEncKey();
List<string> files = new List<string>();

foreach (string str in files)
{

string encFile = file + ".enc";
new Thread((ThreadStart) (() => Program.EncryptFile(file,

encFile, password))).Start();↪→

...

Listing 2: Code snippet from the Main function.

The sample invokes GetEncKey to get the password which will
be used to encrypt victim’s files. Once the key is obtained, the
sample enumerates all the drives on the victim system and looks
for the files with targeted extensions. Next, it creates a thread that
executes EncryptFile for each file. It is remarkable that all files
are encrypted using a single key. We now move to Listing 3 which
gives the implementation of the function GetEncKey to see how
this Crypren variant acquires the encryption keys.

private static string GetEncKey()
{

try
{

using (WebClient webClient = new WebClient())
return webClient.DownloadString(

"http://ohad.000webhostapp.com/cnc.php?txt=saveme")
.Trim();

↪→

↪→

}
catch
{

return "myke123!";
}

}

Listing 3: Implementation of the GetEncKey function.

The sample does not call CryptGenRandom API, rather follows a
strategy that employs a combination of the methods M2 (though
not for public key, but for a secret phrase) and M4 to acquire the
encryption key. First, the sample attempts to connect the hard-
coded address of its C&C server and download a string data from
there, i.e.,M2 is the preferred key-acquiring method, and the server
6CFF Explorer, http://www.ntcore.com/exsuite.php
7dotPeek, https://www.jetbrains.com/decompiler

transmits a string data. If this fails, Crypren uses the secret phrase
embedded in its code (M4), as a fail-safe mechanism. Once the
password is acquired, the ransomware starts to encrypt victim’s
files by executing EncryptFile which is given in Listing 4.

private static void EncryptFile(string inputFile, string outputFile,

string password)↪→

{
try
{

byte[] bytes = new UnicodeEncoding().GetBytes(password);
...
CryptoStream cryptoStream = new CryptoStream((Stream)

fileStream1, rijndaelManaged.CreateEncryptor(bytes,
bytes), CryptoStreamMode.Write);

↪→

↪→

...
}

Listing 4: Code snippet from EncryptFile function.

The encryption key is computed by encoding the password into
a byte array under UTF-16 format, i.e., no cryptographic function is
utilized in key derivation. The sample employs RijndaelManaged
class which provides encryption routines of the AES [4]. No cipher
mode is set explicitly, so the default mode, Cipher Block Chain-
ing (CBC) is used. Initialization vector (IV) equals to the value of
encryption key, again omitting to call CryptGenRandom API.

Decryptor. Using these results, we have implemented a decryptor
for the Crypren sample analyzed in this paper. Our prototype picks
an encrypted PDF file and performs brute-force attack to find the cor-
rect password. At first step, our prototype tries to decrypt the first
block of the ciphertext with the embedded secret myke123!. If the
result looks like the valid PDF header, i.e., starts with 0x25504446,
then the password is found and operation continues with the next
file. Otherwise, the decryptor starts an exhaustive scan to find the
correct password. The domain of the secret phrase is inferred from
the embedded password in which we distinguished lower case let-
ters, numbers and special characters8. Consequently, using Eq. (1),
we estimate the entropy of the password space as log2 468 = 44.19
bits. On Intel i7 CPU clocked at 3.6 GHz, and leveraging AES-NI
instructions, we achieved to try 117.03M pass/s which enables to
find the password in 66.89 hours in the worst case. Our prototype
is an open source software9 developed in C# language and will be
shared with No More Ransom and ID Ransomware platforms.

6.2 Guessing Keys Derived fromWeak RNG
In §5, we presented an example of non-cryptographic PRNG usage
seen in NegozI and Rush/Sanction families. Using Random class to
generate passwords is not uncommon for ransomware developed
in C# language. However, according to the analyses [13, 20], these
ransomware variants dispose the keys without saving them for
recovery. After the files are encrypted, victim’s only option is to
search for a flaw in the ransomware which may allow to recover
the files.

For each file, NegozI and Rush/Sanction generate a unique pass-
word using GetPass given in Listing 1. This secret phrase is used
8We consider the following special characters !@#$&*-+=?.
9Available under GPLv3 at https://github.com/ziyagenc/crypren-decryptor.

http://www.ntcore.com/exsuite.php
https://www.jetbrains.com/decompiler
https://github.com/ziyagenc/crypren-decryptor
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to derive the encryption keys and IVs using Rfc2898DeriveBytes
class which implements PBKDF2 [9] functionality. Salt value used
in PBKDF2 is hardcoded in the ransomware body and iteration
count is set to 1000. Each file is encrypted with a different key and
IV utilizing RijndaelManaged class.

The output of GetPass function, even generated using a non-
cryptographic PRNG, is sufficiently disincentive for brute-forcing
even when the minimum length of the password is set to 30. How-
ever, the flaw in these families enables the recovery process to com-
plete significantly faster, by narrowing down the password space
so making the brute-forcing practical, as follows. Given the same
seed, Random.Next method in .NET framework produces the same
output. Moreover, if Random class is instantiated parameterless, the
constructor uses Environment.TickCount as a seed value10, i.e.,
system uptime. Windows OS periodically logs system uptime in
event logs, so can be obtained after the attack. Furthermore, the
infection time can be retrieved from file system by looking for
file write time. Combining these two clues eliminates considerable
portion of the uncertainty of the seed value. Using this advantage,
researchers developed a decryptor11 for NegozI ransomware which
can recover files in hours.

7 CONCLUSIONS AND FUTUREWORK
The ransomware business model depends on the encrypted data not
being recoverable without paying the ransom. This relies on two
ingredients: robust cryptographic algorithms and strong encryption
keys. The first is easy: ransomware authors can use cryptographic
functions provided by the OS, or publicly available third party li-
braries, e.g., OpenSSL. Fortunately (for the victims), obtaining good
encryption keys is a difficult task. Thus, we evaluated how current
ransomware achieve this task of acquiring cryptographic keys. We
showed that there is one secure way, and that is by having access
to CSPRNG APIs of the host system. Blocking that access, as the
UShallNotPass [8] anti-ransomware does, leaves only weaker
options: ransomware applications that are forced to use these alter-
natives, we argue, can have their work reversed and their targeted
files decrypted. In support to this argument, we analyzed a Crypren
sample and developed a decryptor which was not available be-
fore. We also reported and discussed the weaknesses in the key
generation methods used in NegozI and Rush/Sanction families.

There is future work to do. Cyber-criminals may develop alter-
native methods to generate strong encryption keys. To anticipate
this evolution, we are also studying alternative ways to derive en-
cryption keys, for instance from files as it is done in convergent
encryption [5], a technique applied in cloud computing to build
keys for symmetric algorithms. That said, the security of generating
asymmetric keys from files is not studied yet, and we think it is an
interesting research topic to investigate further.

In §2 we showed how to recover files using a method, M4, that
requires manual intervention. We have to develop an automated
way to accomplish this task. Lastly, due to space restrictions, we
could not discuss how ransomware downloads symmetric keys
from C&C servers. We intend to show that also for this option be

10https://referencesource.microsoft.com/#mscorlib/system/random.cs.
11Available at https://github.com/zisk/evil-decrypter.

secure, ransomware needs to call CSPRNG APIs of the host system,
a strategy that UShallNotPass anti-ransomware can nullify.
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