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Cut-and-Mouse and Ghost Control: Exploiting Antivirus Software

with Synthesized Inputs

ZIYA ALPER GENÇ and GABRIELE LENZINI, University of Luxembourg

DANIELE SGANDURRA, Royal Holloway, University of London

To protect their digital assets from malware attacks, most users and companies rely on antivirus (AV) software. AVs’ protection

is a full-time task against malware: This is similar to a game where malware, e.g., through obfuscation and polymorphism,

denial of service attacks, and malformed packets and parameters, tries to circumvent AV defences or make them crash.

However, AVs react by complementing signature-based detection with anomaly or behavioral analysis, and by using OS

protection, standard code, and binary protection techniques. Further, malware counter-acts, for instance, by using adversarial

inputs to avoid detection, and so on. In this cat-and-mouse game, a winning strategy is trying to anticipate the move of the

adversary by looking into one’s own weaknesses, seeing how the adversary can penetrate them, and building up appropriate

defences or attacks. In this article, we play the role of malware developers and anticipate two novel moves for the malware

side to demonstrate the weakness in the AVs and to improve the defences in AVs’ side. The first one consists in simulating

mouse events to control AVs, namely, to send them mouse “clicks” to deactivate their protection. We prove that many AVs

can be disabled in this way, and we call this class of attacks Ghost Control. The second one consists in controlling whitelisted

applications, such as Notepad, by sending them keyboard events (such as “copy-and-paste”) to perform malicious operations

on behalf of the malware. We prove that the anti-ransomware protection feature of AVs can be bypassed if we use Notepad
as a “puppet” to rewrite the content of protected files as a ransomware would do. Playing with the words, and recalling the

cat-and-mouse game, we call this class of attacks Cut-and-Mouse. We tested these two attacks on 29 AVs, and the results

show that 14 AVs are vulnerable to Ghost Control attack while all 29 AV programs tested are found vulnerable to Cut-and-

Mouse. Furthermore, we also show some weaknesses in additional protection mechanisms of AVs, such as sandboxing and

CAPTCHA verification. We have engaged with the affected AV companies, and we reported the disclosure communication

with them and their responses.
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1 INTRODUCTION

To protect IT assets, distinct classes of basic security practices are often provided to the end users depending on
their usage scenario. For instance, home users are instructed to always update their operating system (OS) and
applications; corporate administrators are required to employ some form of user training to teach users, e.g.,
how not to click on e-mails that look suspicious; organizations are recommended to use firewalls to protect their
networks from remote attackers. However, it is often the case that the first security recommendation given to
all classes of users is to install an antivirus (AV) on their devices. In fact, AVs are believed to be one of the best
protection solutions, specifically against malware. They are installed in most user computers and companies,
and are implicitly trusted by most users, and are part of the trusted computing base.1

It goes without saying that, while AVs do offer protection, they cannot catch all malware. Not only there
might be missing signatures in their databases [2], but over the years malware authors have spent great effort in
trying to evade AVs’ detection, e.g., through obfuscation and polymorphism [40] or evasion [3], or by disabling or
crashing the AV [18, 37]. AVs and malware are engaged in a cat-and-mouse game: attacks based on polymorphism
are typically mitigated by some form of anomaly or behavioral detection [8, 39, 39] while evasion attacks are
mitigated by making the AV more difficult to exploit, such as through OS protection and standard binary integrity
protection techniques [1]. The battle continues on, as now malware can try and bypass AVs’ behavioral detection
using, for instance, adversarial inputs [7], and AVs will incorporate robust mechanisms to mitigate the effects of
these inputs [11, 15]. In this cat-and-mouse game, one party tries to anticipate the move of the other. We believe
AVs should be the party more involved in this thinking-ahead, for instance by questioning whether certain
principles, or certain best practices on which their defences rely upon, are valid, and under which assumptions
and limitations they are so.

Taking this stand, let us consider the best practice of using a whitelist instead of a blacklist. The advantage of
whitelists has been largely discussed elsewhere (e.g., see Reference [31]), but what we question here is whether
AVs, and OSs, make their security dependent too much on them by assuming that whitelisted built-in applications
of OSs, like Notepad and Paint, can never do any harm. To test this hypothesis, in this work, we create a malware
that can control those whitelisted applications like puppets by instructing them to perform malicious operations.
Then, we verify whether, dressed this way, our malware can bypass all the defences that AVs and OSs put in place
to protect files, e.g., have them in the so called Protected Folders. It turns out that we can, and we named this attack
Cut-and-Mouse.

In our second hypothesis, we question whether AVs go one step further, and assume that users have the choice
to decide whether to set the offered protections off and on, without considering whether it is really the user doing
so, or someone (or something) just simulating the user’s behaviour. Thus, we tested whether off-the-shelf AVs can
be disabled (i.e., can be turned off or frozen) by a malware that mimics user inputs through synthesized keyboard
and mouse events. We expected that AVs would have enforced some forms of integrity and authentication checks
on inter-process communications, and user access control to verify the legitimacy of the received inputs. It turns
out that a great deal of them do not. Our attack, named Ghost Control, managed to disable several AVs by spoofing
requests to their main graphical interface.

Problem Statement: This article claims that the following problems exist in current malware mitigation:

(P-i) Several AV programs contain a critical flaw that allows unauthorized agents to turn off their protection
features. In detail, the real-time scanning service of some AVs can be disabled by malware. This will make
victims exposed to several kinds of cyber-threats, especially those originated from malware.

(P-ii) Protected Folders solution provided by AV vendors suffers from design weaknesses. In fact, a small set
of whitelisted applications is granted privileges to write to protected folders. However, whitelisted ap-
plications themselves are not protected from being misused by other applications. This trust is therefore

1Most AVs require kernel-level privileges to perform some of their operations.
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unjustified, since a malware can perform operations on protected folders by using whitelisted applications
as intermediaries. In particular, ransomware might be able to exploit some of the whitelisted applications
to change the contents of files on their behalf, thus to encrypt user data. Similarly, personal files of users
might be irrevocably destroyed by a wipeware.

In this article, we play one move more of the game. We suggest a new principle that, if followed and properly
implemented, render AVs’ and OSs’ resilient to the attacks (Cut-and-Mouse and Ghost Control) that we have
found.

Novel contribution w.r.t. previous work. This article builds up on previous research of ours, a conference article
published in Reference [10]. There, we introduce for the first time Cut-and-Mouse and Ghost Control attacks and
tested 13 AVs against them. In this work, we extend that research with several novel insights: (1) we performed
further experiments on 16 new AVs and we present more experimental results, so that this article’s conclusions
about AVs’ resilience or vulnerabilities against Cut-and-Mouse and Ghost Control attacks are based on all available
consumer level AV products, 29 AVs in total; (2) we provide an improved version of Cut-and-Mouse attack, which
is more efficient and destructive; (3) we comment on our process of responsible disclosure where we informed
AVs of our findings, and we report the answers of the AVs that have answered us; (4) then, inspired, or provoked,
by some early replies that dismissed our attacks as non-critical (some other however took it seriously and fixed
the vulnerabilities or promised to), we first show how our Cut-and-Mouse and Ghost Control can overcome even
some advanced defences that AVs assume to be secure, such as running apps in a sandbox and using CAPTCHA
as a method of distinguishing humans from malware; in so doing, we reveal the limits of other two security best
practices; (5) we also discuss a new defense mechanism against our Ghost Control malware that acts at OS-level,
and that is therefore capable of preventing our malware from disabling an AV’s real-time protection even if the
AV does not take the precautions we suggested to avoid the attack in the first place; (6) finally, we compare our
Cut-and-Mouse and Ghost-control attacks with known attacks, namely, the Shatter Attack [29] and the Synthetic
Clicks [23], in anticipation of future comparative discussions about the nature of event-based attacks and of the
vulnerabilities that they exploit.

Outline. In Section 2, we report the disclosure process and responses of the vendors. We give preliminary
information about AVs and process protection in Section 3. The threat model that we assumed in this work is
stated in Section 4. In Section 5, our first attack, Cut-and-Mouse, which encrypts files in protected folders via
synthesized user inputs, is described. Next, we explain our second attack, Ghost Control, to control the real-time
protection of AVs in Section 6. We also provide a detailed report of our dataset, test environment and results
of experiments in Section 7. Furthermore, extended analysis of two auxiliary security measures used by AVs
are given as a case study in Section 8. The root cause of the issues discovered in this article, and a theoretical
result we obtain are discussed in Section 9. Previous attacks in literature, and their comparison to the attacks we
discovered is presented in Section 10. Finally, in Section 11, we conclude the article.

2 ETHICAL CONSIDERATIONS: COORDINATED AND RESPONSIBLE DISCLOSURE

This research has ethical concerns of dual use research: our findings can be used to improve the security model
of AVs as well as to attack them. Aware of the risk, we adhere to an ethical code of conduct [25]: We do not
disclose the names of the AV companies, nor publicly share any piece of software that can be used to exploit the
vulnerabilities reported in this article. We also follow a practice of responsible disclosure [20]: We have dutifully
engaged with the affected AV companies to inform them about our findings, ensuring they knew about our
research. We have shared with them whatever they needed to replicate our attacks and to gain insights to fix
the vulnerabilities that we think are the root cause of the success of the attacks. All the affected AV companies
have been dutifully informed. We told them that, we believe, is their the responsibility to fix whatever needs to
be fixed, but we leave to them to judge the severity and the impact of our research on their products and clients.

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 4. Publication date: February 2021.
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Table 1. The Process and Results of the Responsible Disclosure with the Affected AV Vendors

Dedicated Encrypted Disclosure Disclosure Response Current
Vendor Channel Email Platform Date Time Decision
V4 ✓ ✓ ✗ 30.10.2019 1 day Released a fix
V5 ✗ ✗ ✗ 09.09.2020 No Response
V6 ✓ ✗ ✗ 09.09.2020 <1 day Working on
V7 ✓ ✗ ✗ 30.10.2019 1 day Rebutted
V8 ✓ ✗ ✗ 09.09.2020 3 days Won’t Fix
V12 ✗ ✗ ✗ 09.09.2020 <1 day
V14 ✗ ✗ ✗ 09.09.2020 No Response
V16 ✓ ✗ ✓ 30.10.2019 1 day Not Prioritized
V20 ✓ ✓ ✗ 09.09.2020 No Response
V24 ✓ ✓ ✓ 10.09.2020 4 days
V26 ✗ ✗ ✗ 09.09.2020 No Response
V27 ✓ ✓ ✗ 30.10.2019 5 days Fixed
V28 ✗ ✗ ✗ 30.10.2019 No Response
V29 ✗ ✗ ✗ 30.10.2019 1 day Working On

Vx denotes the vendor of AVx .

We have not forced nor nudged them to react by using our research as a leverage. Such a mission is outside to
our ethical stand-point. In any case, we will not reveal the names of AVs as with some of them.

That said, we think useful to report some data about how many AVs we have found vulnerable, and how
they have responded to our attempts, to contact them. Table 1 summarises the situation for the companies we
identified that AV products of 14 vendors are vulnerable to our attacks. Ten of 14 vendors have engaged in a
conversation with us or have answered somehow.

Please note that we have only engaged with the vendors of the 14 AVs we discovered vulnerable. Therefore,
we do not know whether these attacks are successful (or not) on other AVs, but we do hope that the results of our
research motivate other AV vendors to perform a similar security analysis and, in case, adopt countermeasures.

Communication Method. We strove to communicate over official channels to inform the vendors, and share
the technical details of the issues, proof-of-concept materials, as well as potential mitigation techniques. As we
can see from Table 1, V16 and V24 use independent platforms for vulnerability disclosure. We filled application
forms and marked the vulnerability type as a critical. Four vendors—V4, V20, V24, and V27—accept encrypted
emails and their PGP keys are available on the company websites. We used this communication method and sent
encrypted emails to these addresses (except V24, which was reached using an independent platform). V6 and
V8 accepts unencrypted emails (V6 publishes a PGP key, but it does not match the email address dedicated for
vulnerability disclosure). V7 provides a dedicated web page for vulnerability reports, so we filled the form on the
page with a description of the issue. V5, V12, and V26 do not provide dedicated channels to report vulnerability,
therefore, we engaged with these companies using their support mail. Last, V14, V28, and V29 do not have any
suitable channel to reach out, thus we filled the contact forms at the company websites as a last resort.

Reactions. Six of 14 vendors replied to our disclosure in 1 day (hereafter day means calendar day). However, no
vendor could give us an exact time for a fixed release. V4 is the only vendor that informed us that it released the
fixed version. V27 worked with us to fix the vulnerability and implemented the patch, however, did not inform us
if it has released the fixed version. Quite surprisingly, vendor of AV16 acknowledged that V16 is vulnerable but
they considered its severity as low, and did not put a patch for it their priority list. V8 also informed us that the
issue will not be addressed by V8 as it should be fixed in the OS level. V6 and V29 replied that they acknowledged
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the vulnerability and are working on the issue, however, did not inform us about any release plan. V7 rebutted
our initial disclosure; we replied back and wait for their response. We have not heard back from V12 and V24
about the issue. We attempted to contact V28 several times. In our last attempt, V28 closed the ticket that we
described the vulnerability and never replied back to us. We have not received any reply from V5, V14, V20, and
V26. V4 an V27 offered to publish our names on the company websites. Furthermore, V4 offered us a bounty for
our vulnerability disclosure. Microsoft has been informed about our Cut-and-Mouse attack since the beginning.
They acknowledged the weakness in Windows 10 and informed us that an investigation is going on to find the
root cause of the weakness and to formulate an efficient fix.2

3 BACKGROUND

In this section, we recap the essential background information to understand our attacks. We begin with ex-
plaining the ransomware mitigation in current AV solutions. Next, we summarize existing measures provided
by Windows OS to protect processes from unauthorized modifications.

3.1 Ransomware Defense in AVs

In response to the rise of ransomware threat, AV vendors have developed dedicated ransomware detection mod-
ules that are either integrated into their products or as standalone tools. While internal mechanisms of AVs are
not publicly documented, the available options in most of AV configuration interfaces suggest that these anti-
ransomware components are primarily based on whitelists. Similar to the virus signature databases, these lists
are maintained by AV vendors by default, though, users can also add additional applications that they trust.

The vendor of Windows OS, Microsoft, has also developed a specific anti-ransomware solution, called Con-
trolled Folder Access, which has been included in Windows 10 Fall Creators Update (Version 1709) and Windows
Server 2019. Ransomware Protection, integrated into Windows Defender antivirus, controls which applications
have access to protected folders, a list of directories that includes system folders and default directories such
as Documents and Pictures. Users can also add further directories to the protected folder list to extend the
coverage of protection. By default, the decision of granting applications access to protected folder is made by
Windows, hence Microsoft, but users can also allow specific applications to access the protected folders.

In this article, we use the term trusted applications when referring to the applications that has write access to
protected folders, either granted by AV vendor, by the OS or added by the user.

3.2 Process Protection via Integrity Levels

Computer architecture we use today is designed to run multiple processes concurrently, that is, all running pro-
cesses share the same execution environment. To protect processes from malicious alterations by other processes,
Windows OS employs access control mechanisms. Mandatory Integrity Control (MIC) is one of these security
features, which enables the OS to assign an Integrity Level (IL) to a process: this value indicates the privilege
level of that process. Mandatory Integrity Control (MIC) defines four values for Integrity Level (IL), with the in-
creasing privileges: Low, Medium, High, and System. When a process attempts to interact with another process,
MIC checks IL of the initiator and prevents if the target has higher IL. For example, injecting code to another
process using CreateRemoteThread or write data to the memory of another process via WriteProcessMemory
will fail if the caller does not possess at least the same IL as the target.

Closely related to MIC, User Interface Privilege Isolation (UIPI) is another security feature of Windows, which
complements MIC to prevent unauthorized process interactions. User Interface Privilege Isolation (UIPI) also
utilizes ILs and blocks window messages flowing from a process with lower IL. For example, calls to SendMessage

2Note that, in this specific case, it is not possible to anonymize the name of the affected vendor as the root of the vulnerability that enables

one of our attacks lies in the Operating System running the AVs (Windows) rather than the AVs. At the time of the writing, the responsible

disclosure period, 90 days, has elapsed so we feel compelled to share the details publicly.
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Application Programming Interface (API) would fail if the caller has a lower IL than the target. Specifically, UIPI
prevents the Shatter attack that we review in Section 10.

4 THREAT MODEL

In the description of our attacks, we assume the system is protected using the latest generation of AVs with
specific modules against ransomware, and with built-in anti-ransomware feature of the OS. We assume the
attacker is able to get access to a Windows system with user privilege levels by either tricking the user into
clicking on a file (e.g., attached or linked in an email) or by exploiting a vulnerability in the victim’s system. Once
the attacker has established a foothold into the system, it will typically drop/download a malware to perform
malicious operations, however, the malware will be blocked by an AV, or in the case of ransomware, encryption
of files in protected folders will be blocked by anti-ransomware protected folder feature offered by Windows
or some AVs. Henceforth, the focus of this article is on how attackers can bypass AVs and anti-ransomware
protection modules, and in providing practical mitigation solutions, rather than in the problem of detecting and
protecting the system from remote attacks. This threat model is sometimes referred as a second-stage attack,
meaning an attacker would need to have remote access to a victim’s computer, or have installed a malicious
application using one of the two previously outlined alternatives (or through other means). In this threat model,
we will perform two attacks, which are described in the next two sections: the first attack (Cut-and-Mouse) is
aimed at bypassing the protected folder feature to encrypt files in protected folders, while the second one (Ghost
Control) is aimed at disabling AVs’ real-time protection.

5 CUT-AND-MOUSE: ENCRYPTING PROTECTED FOLDERS

In this section, we describe our first attack, Cut-and-Mouse, which allows ransomware to evade detection of anti-
ransomware solutions that are based on protected folders, and to encrypt the victim’s files. First, we investigate
the root causes that lead to this attack. Next, we give the attack details, and finally propose a practical solution.

5.1 Disharmony between UIPI and AVs

As explained in Section 3, anti-ransomware modules of commercial AV software grant write access to trusted
applications only. To ensure this defense strategy cannot be easily bypassed, the trusted applications should be
protected from any malicious modifications that would be seen in a typical malware attack. For instance, as we
detail in Section 7, current AVs detect when a malicious Dynamic-Link Library (DLL) module is injected into
a trusted application, and suspend or kill its process. Similarly, UIPI, another protection described in Section 3,
protects processes that run with administrative privileges from malware.

Nonetheless, we have discovered two entry points for an attack that enable malware to bypass these defense
systems, namely:

(E-i) UIPI Is Unaware of Trusted Applications: UIPI filters simulated inputs based on integrity levels, however,
UIPI is agnostic of the trust level assigned to applications, so it does not enforce any policy in these
cases: as shown in Figure 1(a), that means that an attacker can send messages to trusted applications, in
particular to those that are allowed to read and write to protected folders;

(E-ii) AVs Do Not Monitor Some Process Messages: AVs do not monitor synthesized clicks or key press events
flowing into the trusted applications: as depicted in Figure 1(b), this means that a ransomware can bypass
protected folder enforcement by sending control messages to a trusted application.

These two entry points form a vulnerability that can enable malware to perform practical attacks, such as
that shown in Figure 1(c) where a ransomware can control a trusted application to perform controlled write
operations as to encrypt inaccessible protected files. The attack is described in more detail in the next section.

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 4. Publication date: February 2021.
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Fig. 1. The disharmony between UIPI and AV software’s protected folders mechanism, as described in panels (a) and (b), is

the root cause of the vulnerability, which leads to the attack depicted in panel (c).

Fig. 2. Bypassing anti-ransomware protection of AVs by using inputs programmatically synthesized by ransomware to con-

trol a trusted application.

5.2 Attack Overview

Using the vulnerability described in the previous section, ransomware can bypass anti-ransomware protection
via controlling a trusted application and encrypt the files of the victim, including those stored in protected
folders. To this end, for each file Ftarget , the ransomware performs the following tasks as depicted in Figure 2.
First, ransomware reads the contents of Ftarget , which is in a protected folder (1). This is perfectly legal: in fact,

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 4. Publication date: February 2021.
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reading a protected file is permitted by default.3 The plaintext retrieved from Ftarget is encrypted in ransomware’s
own memory. The resulting ciphertext is then encoded in a suitable encoding format, e.g., Base64 [14], and copied
into the system clipboard (2). Next, the ransomware launches the Run window (3) to start a trusted application
Apptrusted , with the goal of controlling it. In this example,Apptrusted is Notepad as it is typically trusted in Windows
environments. In addition, Notepad understands shortcuts for file and edit commands that ransomware will send.
Using the Run window, ransomware executes Apptrusted with the argument Ftarget , so that the contents of Ftarget is
loaded into Apptrusted ’s window (4). Next, the data in Apptrusted ’s window are selected, and overwritten with the
clipboard data (the encrypted data) with a paste command (5). Finally,Apptrusted is instructed by the ransomware
to save the modifications, and close the handle to Ftarget (6). All interactions in Steps 3–6 are carried out by
sending keyboard inputs that are synthesized programmatically by the ransomware to control Apptrusted .

ALGORITHM 1: Cut-and-Mouse Attack: Exploit Trusted Apps with Simulated Keyboard and Mouse Inputs to
Write to Protected Folders.

1: function Cut-and-Mouse(Apptrusted ) � Application to Control.

2: FileList ← EnumerateTargetFiles()
3: for all f ∈ FileList do

4: plainBytes ← f .ReadAllBytes()
5: encBytes ← Encrypt(plainBytes )
6: encodedText ← Base64(encBytes )
7: CopyToClipboard(encodedText)
8: Simulate(Run, Apptrusted < f >) �
9: Simulate(SelectAll) �

10: Simulate(Paste) �
11: Simulate(Save) �
12: Simulate(Close) �
13: return Success

The combination of these actions effectively allows ransomware to bypass the current protection methods
of AVs that are aimed explicitly at blocking ransomware. Therefore, by referring to the never-ending “cat-and-
mouse” game of detection/anti-detection and anti-evasion/evasion among AVs and malware, and the usage of
simulated keyboard and mouse inputs, we have named this attack Cut-and-Mouse.

Algorithm 1 details the main steps that are required for the Cut-and-Mouse attack to be successful. First, the
step Open Run Window (3) in Figure 2 is needed to disguise the operation of starting a trusted application as if it
was executed on behalf of the user. If, instead, Notepad is directly executed by the ransomware, then AVs would
block write requests even if the rest of the attack is performed as described previously. In fact, in this example,
even if Notepad is a trusted application (therefore allowed to write on protected folders), its parent process would
be the ransomware, which is not trusted by the AVs, hence, write operations would be blocked. Second, as noted
in Footnote 3, the step Read File Contents depicted in (1) in Figure 2 can be blocked by AVs in some circumstances.
For this reason, this limitation (that of not being able to read file contents) can be circumvented if ransomware
exploits a trusted application to access the content on behalf of the ransomware. For example, ransomware could

instruct Notepad to open the target file, and then synthesize two keyboard press events for (Select All)

and (Copy), which would allow the ransomware to select all the content of the file and copy it to the
system clipboard. Since the clipboard is shared between all running processes, ransomware can easily obtain
the clipboard contents. It should be noted that, though, this technique might result in unrecoverable data loss

3Some AVs also provide an optional, more strict access setting that, if activated, makes AVs block the read requests from non-trusted

applications.
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with binary encoded files, due to the the presence of non-printable characters displayed by Notepad. However,
ransomware can detect the content of the file before deciding which file to encrypt.

5.3 Proposed Mitigation Strategy

As a simple yet effective countermeasure to protect AVs modules against our Cut-and-Mouse attack, we suggest
that trusted applications should not receive messages from non-trusted applications. That is, AVs must intercept
all messages flowing to a trusted process and block (or discard) the messages sent by non-trusted processes.
This countermeasure is analogous to what UIPI already implements to guarantee process privileges. It should be
noted that, however, UIPI is not provided with whitelists of AVs: therefore, it cannot enforce such a filtering in
practice and this defense task should be fulfilled by the AV programs.

We elaborate more on this strategy in Section 9, where we define a requirement that a secure message filtering
system should at least have.

6 GHOST CONTROL: DISABLING ANTIVIRUS SOFTWARE

In this section, we describe how the simulation attack Cut-and-Mouse described in Section 5 can also be effectively
applied in other scenarios, and we also attempt to hypothesize how it can be used in future attacks.

In the course of our analysis, we have found a surprisingly simple utilization of synthesized mouse events
technique, which would allow an attacker to deactivate nearly half of the consumer AV programs, including
some popular products. We start by explaining the reasons for the presence of deactivation functionalities in
AVs. Next, we describe the steps to perform the second attack proposed in this article (Ghost Control), investigate
the weakness in detail, and propose a practical solution to fix it.

6.1 Necessity of the AV Deactivation Function

Signature-based detection has been the primary defense method of AVs, and naturally, this technique is efficient
only against known malware as it can be bypassed easily, e.g., by obfuscation/packing and polymorphic malware.
To minimize this limitation, nearly all current AVs employ some heuristics to detect malware by monitoring be-
haviors of processes and looking for anomalies. However, this functionality comes with a price: occurrences of
false positives. In the context of malware defense, false positive is the situation where an AV software flags a
benign executable as malware, and it usually proceeds with termination of the associated process, hence inter-
rupting the user. For example, when a user installs a new software package, the installer may write to system
directories, modify the Windows Registry and configure itself to run when the user logs in. The behavioral deci-
sion engine of an AV may be confused by these activities, which indeed might look suspicious as they are largely
used by malware. Therefore, an AV may prevent the software from being installed correctly. Consequently, some
vendors recommend the users to turn off their AV temporarily for a successful installation of their benign ap-
plication, for instance [30]. Moreover, some special software may require AV to be disabled while running, for
instance [13]. As a result, AV companies provide users with a switch that can be used to deactivate the real-time
protection for different periods of time, ranging from a short period, such as 2 min, to longer periods, such as
2 h, or until the computer reboots. Of course, the ability to “freeze” an AV might lure attackers to abuse this
functionality to bypass malware detection, hence, AVs should offer ways to ensure that this functionality can be
disabled only by authorized users.

6.2 Stopping Real-time Protection

In our second attack, Ghost Control, we show how an attacker can disable the AV protection by simulating
legitimate user actions to activate the Graphical User Interface (GUI) of the AV program, and then to “click” the
turn-off button. The proposed attack comprises two phases. The first phase is performed off-line by the malware
developer. In this phase, the developer collects the required pieces of information about the user events to be

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 4. Publication date: February 2021.



4:10 • Z. A. Genç et al.

simulated to successfully disable the AV. This set of information consists of (i) x and y coordinates on the screen;
(ii) which mouse button to be simulated; and (iii) length of time to wait until the next menu is available. Please
note that the mouse coordinates should lie in the correct area on the screen for this attack to work. In addition,
these values would change from victim to victim, or even in the same host, as the screen dimensions vary or
would differ under various resolutions. Therefore, the malware author needs to collect the correct locations of
the menus of all the major AVs under different display settings to increase the effectiveness. For example, this
would require the attacker to install the target AVs in virtual environments with different screen dimensions to
collect the necessary data. Once data collection is completed, malware author embeds that information into the
malware executable to be used during the attack (alternatively, malware can download the required information
from a remote server at the time of attack).

The second phase of the attack is the actual malicious step, which starts immediately after the infection. On the
victim machine, malware performs a reconnaissance work to determine the installed AV product(s) and obtain
the screen dimensions. Next, malware prepares the event sequence to be simulated to turn off the AVs, and
synthesizes the keyboard and mouse events accordingly. Algorithm 2 illustrates the part of Ghost Control that is
responsible for the turning off of the installed AV program.

ALGORITHM 2: Ghost Control Attack: Disable Real-time Protection of AV with Simulated Events.

1: global EventSequenceDatabase as EvSecDB
2: function TurnOffProtection

3: antivirus ← GetInstalledAV() � AV to deactivate.

4: events ← EvSecDB.GetEventSequenceFor(antivirus)
5: for all e ∈ events do

6: Simulate(e)

7: return Success

As a consequence, the range of functionalities that Ghost Control enables to malware authors is very large,
some having a high impact: for instance, once the real-time scanning is stopped, malware can be instructed to
use Ghost Control to drop and execute any malicious program from its Command and Control (C&C) server.

6.3 Proposed Mitigations

To develop a robust defense against this vulnerability, we need to understand the root causes behind this vul-
nerability. Our analysis shows that there are two reasons why Ghost Control is able to deactivate the shields of
several AV programs:

(W-i) AV Interface with Medium IL. Processes related to the AV main interfaces that manage these defense sys-
tems run in such a way that they are accessible from processes that run without administrative privileges.
It is therefore possible to send “messages” from any process to these process, e.g., mouse click events,
without any restriction.

(W-ii) Unrestricted Access to Scan Component. The scanning components of vulnerable AVs do not require the
user to have administrative rights to communicate to them, e.g., they can receive a TURN_OFF message
from any process. Consequently, Ghost Control can initiate and control the reaction, which involves ac-
cessing this critical component of AVs.

(W-ii) is actually a more critical vulnerability than (W-i). In fact, if an AV software has (W-ii), then malware can
skip interacting with the GUI of AVs through (W-i) to directly communicate with the AV’s scanner component
and send a TURN_OFF message. This is in fact only a practical limitation: for instance, in our experiments (see
Section 7), we have noticed that AV12 employs CAPTCHA mechanisms to verify that the user really wants to
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turn-off the protection. Even if we assume the CAPTCHA is a solid measure against automated attacks,4 however,
malware can still bypass the CAPTCHA verification by directly accessing the scanner component due to (W-ii).

It is worth noting the subtle difference between {(E-i), (E-ii)} and {(W-i), (W-ii)}. We believe (E-i) and (E-ii)
are due to an optimistic, or defective, or misdirected threat analysis: it appears as those threats have not been
considered, leaving the system undefended against them. However, (W-i) and (W-ii) resemble the results of
committing a vulnerable code to the repository of AV software, and could be avoided by a security assessment
in the development process.

To mitigate the root causes of the failure of the affected AVs, we propose a solution based on the following
principles:

(F-i) Elevated AV Interface. AVs should run the main GUI interface with administrative privileges. By doing so,
AV processes will have high IL, and AVs would not receive the messages of Ghost Control or any other
malware, since UIPI would drop the unauthorized messages.

(F-ii) Restricted Access to Scan Component. AVs should design and develop their scan components in such a way
that accessing it would require the user to have administrative rights.

Mitigation at OS Level. Windows platform provides a tool to monitor critical components and applications,
including virus protection, firewall, and OS updates. This tool, called Windows Security Center (WSC), reports
the security status of the system to Action Center. For example, WSC detects if an AV program is installed, and
continuously checks if the AV is turned on and up-to-date. If, for some reason, real-time protection of the AV
stops, then WSC informs Action Center, which notifies the user and provides an interface to take a remediation
action.

We propose to adapt this architecture to detect and prevent (W-i) and (W-ii) as follows. AV programs can
already be integrated to Action Center by registering themselves with WSC. During registration, the path of
the main executable of the AV program is supplied to WSC along with the product name and other pieces of
information. WSC can use these data to perform security checks on the AV executable, in particular, WSC can

(1) prevent the registration of the AV if the AV’s interface is configured to run with medium IL;
(2) auto-escalate the integrity of the AV process to high; or
(3) set the security descriptors of an AV components to default value so that accessing them requires system

or administrator privileges.

The first option, preventing installation of the AV, can be viewed as undesirable, especially considering the
availability of the second and third options. However, it should be noted that a mitigation that includes raising an
error would ultimately allow the developers to be aware of the vulnerability, and might lead them to discovering
other issues that would remain hidden otherwise.

In the next section, we discuss and share the results of our experiments, which show that (i) some AVs are
vulnerable to Ghost Control (ii) the proposed measures are actually employed by some AVs that, therefore, are not
vulnerable to the Ghost Control attack. From that evidence, we conclude that these attacks are able to circumvent
several off-the-shelf AVs; and the proposed mitigation is both effective and practical to use in real-world systems.

7 EXPERIMENTAL RESULTS

To demonstrate the impact of the exploitation of the vulnerabilities described in Sections 5 and 6, we developed
three proof-of-concept prototypes for the attacks, and tested them against consumer products of 29 AV compa-
nies. In this section, we detail the dataset and test environment of our experiments, and report our findings.

4We note that CAPTCHA can actually be bypassed using other means, e.g., with CAPTCHA solving services, but they might not always be

applicable.
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7.1 Dataset and Test Environment

The list of the AV programs that we would test in our experiments was determined from the reports of indepen-
dent organizations that test AV products. We populated our initial list with the AVs from the recently published
reports of AV-TEST [5] and AV-Comparatives [4]. The initial list had AVs from 35 vendors, however, some vendors
discontinued their consumer AV product, or were not available for download. In the end, our dataset contained
29 AV programs from world wide vendors.

We conducted all experiments on a Virtual Machine (VM) running Windows 10 Pro x64 Version 1903 (OS
Build 18362.30) OS. After a fresh installation of Windows 10, we updated the system and created a snapshot of
a template VM. Next, in each run of the experiment, we restored the VM to the snapshot and installed the latest
version of the AV software to be tested (available at the time of this writing), which was usually determined
by the installer application downloaded from the vendor’s website. Finally, we updated the database of the AV
software to obtain the latest signature definitions and heuristics.

7.2 Attacks Detected by AVs

We first verified whether AVs are able to detect and block known attacks aimed at bypassing the anti-ransomware
module. In the first experiment, we injected a malicious Dynamic-Link Library (DLL) into a trusted application,
where the DLL would start encrypting the default files protected by AVs. As expected, all of the 29 AVs in our
dataset detected this technique, and suspended (or sometimes killed, e.g., AV17) the injected trusted application
before the first write operation, as DLL injection is one of the oldest attack techniques.

The next experiment was aimed at maliciously controlling a trusted application to save encrypted content to
protected files. In this attack, we instructed a ransomware program implemented in C# language to launch the
trusted application using Process.Start method. As expected, this attack is also not effective as the trusted
application is created as a child process of the ransomware, which is not trusted, and therefore blocked by AVs.

Last, we executed a ransomware with elevated privileges while protected folders feature of AVs were active.
The sample, instead of using our Cut-and-Mouse technique, is designed to directly encrypt and overwrite the files
in Documents and Pictures folders. Again, all AVs in our dataset detected the attack and blocked the malicious
operations, which shows that protected folders feature of AVs is immune to ransomware having admin privileges.
Therefore, using existing attack techniques, all attempts to write into protected folders are blocked by the AVs.

7.3 Encrypting Files in Protected Folders via Simulated Inputs

In this section, we report the test results where attack is run against AVs. First, we describe the technical require-
ments for the successful exploitation of attack, and our implementation.

7.3.1 Technical Requirements. Successfully performing attack requires a trusted application that should be
available on the victim’s machine. Furthermore, this specific trusted application should possess the capabilities
to: (i) be started from command line; (ii) accept file paths as argument; (iii) edit/manipulate files; and (iv) receive
inputs from clipboard. We have discovered that the best candidate that fulfills all these requirements is the
Notepad application, since it is one of the most commonly-used built-in Windows application, and it is digitally
signed,5 therefore, whitelisted by AV programs. In addition, file size limit of Notepad is 56 MB on Windows 7,
while it can open documents that are larger than 512 MB on Windows 8.1. File size limit of Notepad comes with
Windows 10 is not documented by Microsoft, but the trend suggests that it should be higher than the limits
of previous versions. To send data from a ransomware sample to Notepad application, we exploit Windows
Clipboard, which stores objects that can be shared between all running applications. The memory area to store
these objects are allocated using GlobalAlloc function. On 32-bit systems, virtual memory of a process is limited

5The digital signature of Notepad, as is the case for many built-in Windows applications, is not embedded in the binary but can be found in

the appropriate catalog file.
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with 2 GB, which also determines the maximum capacity of the clipboard. This gives us a sufficiently large
memory space to store encrypted and encoded data, so makes the clipboard suitable to use as a swap area in our
attack.

7.3.2 Implementation. We implemented a prototype of in C# language, using .NET Framework version 4.6.1.
The prototype synthesizes only keystrokes as input simulation, for which, SendInput is employed.

Our prototype implements Algorithm 1 and works as follows. First, all of the files in the target directory
are enumerated using Directory.GetFiles, and the files with the target extensions are filtered. Namely, in the
experiments, we targeted the following file extensions: .docx, .xlsx, and .png. Next, using Clipboard.SetText,
ransomware copies the command attrib.exe -r targetPath\*.* to the clipboard, where targetPath is
replaced with the absolute path of the target directory. We instructed the ransomware program to simulate

keystrokes to open the Run window, and and to run the copied command. This step
ensures that the read-only attribute was removed from the target files.

Next, for each file, our prototype proceeds as follows. First, the file is read as binary using File.ReadAllBytes
and then, using AesCryptoServiceProvider, the content of the file is encrypted in memory. After this, the
byte stream is converted into printable text using Base64 encoding, and copied to the system clipboard. As
previously discussed, our prototype uses Notepad as Apptrusted , so it executes command, sleeps 500 ms
while waiting for the Run window to open, and then pastes the command notepad.exe targetFile into the
Run window, where targetFile is replaced with the absolute path of Ftarget . At this step, the prototype sleeps
for an additional 500 ms to ensure that Notepad window is opened—this window displays the contents of the

file. Next, the prototype sends the keystrokes to select all the text in the Notepad window and
to paste the clipboard data into it, which replaces the selected content with the ciphertext. Here, the prototype
performs one final sleep of 500 ms to ensure that all the data are correctly pasted into Notepad. To save the

file, command is sent to Notepad, which effectively overwrites the file with the encrypted data. Finally,

command is sent to close Notepad.

7.3.3 Test Results of Cut-and-Mouse Attack. After installing the AV software on the VM snapshot, we placed
decoy files in the Documents and Pictures folders of the user—these are both protected folders, hence protected
from ransomware attacks. Next, we run our Cut-and-Mouse prototype and checked the effect of the attack on
the files.

At the end of each run, the decoy files were overwritten with the pasted data successfully. The results demon-
strate the effectiveness of the Cut-and-Mouse attack, which was able to bypass all 29 AV programs in our test
set and encrypt the files in the protected folders. To the best of our belief, Cut-and-Mouse is a new attack that
controls legitimate applications for malicious purposes via simulated user inputs. The evidence that even the
latest AV products cannot detect this attack suggests that this new attack type can cause more damages if used
by real-world attackers with different—and possibly creative—ideas to perform powerful exploitation of systems.

7.4 Destructive Cut-and-Mouse: Wiping Files in Protected Folders

Although Cut-and-Mouse attack is effective on AVs, the limitations of using Notepad forms a performance bar-
rier when the file size noticeably increases. To remove this bottleneck, we will use another built-in Windows
application, Paint, as intermediary.

Paint also satisfies all the technical requirements in Section 7.3.1 with a couple of exceptions. First, only some
image files are accepted as a file argument. Paint raises an error when the user tries to open a .PDF document,
for example. Second, Paint only accepts a valid image from clipboard. If the image in clipboard is corrupted,
then it cannot be pasted to Paint.

The first limitation can be overridden easily by adding a file extension explicitly, which would allow Paint to
write to any files. The second limitation, however, makes it difficult to build an “operational” (i.e., fully working)
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Fig. 3. Console output of the application that sniffed the real user actions while disabling AV27.

ransomware, as it requires the implementation of a reversible encoding technique to transform arbitrary data to
a valid image format. Instead, for the scope of this research, we demonstrate another type of malware, known
as wipeware, able to overwrite user’s files with a randomly generated image to destroy them permanently.

As in Section 7.3.2, Cut-and-Mouse wipeware also starts with collecting target files and removing their read-
only attributes. Next, the wipeware prototype creates a random bitmap image, which has the same size of the
largest file. The random image is copied to clipboard by calling Clipboard.SetImage. Then, for each target file,
the wipeware performs the following tasks in order: (i) synthesize , programmatically type mspaint.exe

in the Run window, and synthesize to open Paint; (ii) synthesize to paste the random image from

clipboard after Paint windows appears; (iii) synthesize to save the file, which would open up the File
Save dialog; (iv) programmatically type the full path of the file and synthesize ; (v) synthesize to

confirm the overwrite message box; (vi) synthesize to close Paint. By sleeping 500 ms between each
step to ensure all operations are carried out correctly, our Cut-and-Mouse wipeware could destroy each decoy
file in a few seconds.

7.5 Controlling Real-time Protection of AVs

To demonstrate the feasibility of our attack in Section 6, we implemented the prototype of Ghost Control in
C# language, using .NET Framework version 4.6.1. To collect the coordinates of the mouse on the screen, the
prototype uses GetCursorPos() Application Programming Interface (API). For synthesizing keystrokes, mouse
motions, and button clicks, SendInput() API is used. Between each simulated mouse clicks, the prototype sleeps
for 500 ms to ensure that the next menu on the GUI is available to be selected.

7.5.1 Collecting Coordinates to Disable AVs. After installing the target AV, we performed cursor movements
towards the tray icon area as to select and click the AV icon6 and used AV’s Graphical User Interface (GUI) to
disable the real-time scanning using the provided menus. During this procedure, we recorded the (x ,y) coor-
dinates of the cursor and the types of clicks that we had performed until the protection was disabled, i.e., AV’s
security notification appeared. For instance, Figure 3 shows the console output of the application we used to
collect mouse coordinates while a real user disables AV27 on a VM with screen resolution set to 1920 × 1080.

For the duration of the deactivation, we used the default values suggested by AVs to freeze their functions. The
minimum length is usually set to be 15 min, which is a sufficient time frame to successfully conduct an effective
attack. Here, the attackers could also select an option that gives them a longer time-period.

7.5.2 Stopping Real-time Protection. Using the collected coordinates of the AV’s menus and buttons, we in-
strumented the recorded actions and parameters into our Ghost Control prototype, which is used to exploit the
specific AV that we tested in each experiment. Next, we run the Ghost Control prototype and waited until all the
events are simulated.

6For the sake of proof-of-concept, we did not implement a function to detect AV’s icon among the tray icons. Actual malware would need

to do that, for example, by checking window titles to find AV’s icon, but this is not a difficult routine.
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Table 2. Evaluation of AV Products

Product IL of GUI Utilizes UAC Vulnerable to Ghost Control Vulnerable to Cut-and-Mouse

AV1* Medium ✓ ✓
AV2* Medium ✓ ✓
AV3 Medium ✓ ✓
AV4* Medium ✓ ✓
AV5 Medium ✓ ✓
AV6 Medium ✓ ✓
AV7* Medium ✓ ✓
AV8 Medium ✓ ✓
AV9* Medium ✓ ✓
AV10* Medium ✓ ✓
AV11 Medium Plus ✓
AV12 Medium ✓ ✓
AV13* Medium ✓ ✓
AV14 Medium ✓ ✓
AV15 Medium ✓ ✓
AV16* Medium ✓ ✓
AV17* Medium ✓ ✓
AV18 High ✓
AV19* Medium ✓ ✓
AV20 Medium ✓ ✓
AV21 Medium ✓ ✓
AV22 High ✓
AV23 High ✓
AV24 Medium ✓ ✓
AV25 High ✓
AV26 Medium ✓ ✓
AV27* Medium ✓ ✓
AV28* Medium ✓ ✓
AV29* Medium ✓ ✓
Tested: 29 Vulnerable: 14 Vulnerable: 29

Check marks under Vulnerable to Ghost Control denotes the AV products that were successfully disabled by Ghost Control. Next,

Vulnerable to Cut-and-Mouse column reports the AV programs that could not detect the encryption of protected files by Cut-and-

Mouse. AV label with an asterisk (*) indicates that that AV was evaluated in our previous work.

If Ghost Control attack succeeds, then a warning window appears that notifies the user that the computer is
not protected. In some experiments, we even went further and simulated mouse clicks to remove this notification
window, which would be expected from a real-world malware. This shows how this class of attacks can be further
extended to perform potentially more powerful malicious actions.

As shown in Table 2, during our experiments on 29 AV products, we detected that 14 AVs could be efficiently
deactivated by Ghost Control using our attack in Section 6. According to a recent report by OPSWAT [26], the
market share of AVs that are vulnerable to Ghost Control is more than 29%.7 Furthermore, six of these AVs have
been frequently rated as “TOP PRODUCT” in the reports of AV-TEST, and three of them received three stars

7We were not able to calculate the exact statistics as the shares of the 10 AVs that we could stop are consolidated into “Other.”
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(best rating) from AV-Comparatives. It is surprising for us that such a critical vulnerability, arguably one of the
worst that an AV might have, is found in such a large share of AVs.

In the experiments in which Ghost Control was not able to successfully disable the AV, we noticed that this
was due to two factors. First and foremost, User Account Control (UAC) prompt, which uses MIC stopped Ghost
Control attack. In these cases, after Ghost Control generated a click event to turn-off protection, UAC notification
appeared, which always runs with high IL. However, since Ghost Control is a medium IL process, it was not be
able to bypass UAC verification successfully. Second, as shown in Table 2, five AVs always run with medium plus
IL or high IL. Consequently, UIPI filters and drops the events that our Ghost Control prototype synthesizes and
sends to these AVs.

8 SECURITY ANALYSIS OF AUXILIARY MEASURES

During the experiments, we were confronted with two additional security measures, namely, sandboxing and
CAPTCHA verification, which protected AVs from Ghost Control in cases where the GUI of the tested AV was
vulnerable. In this section, we will look at these measures and explain how we were able to bypass them.

8.1 Insecure Sandboxing Methods

In the security context, sandboxing is a mechanism to run an unknown application in a controlled environment,
isolated from the host. The main purpose of employing sandbox in AVs is to prevent previously unseen malware
from damaging the system, which would evade the signature-based detection otherwise. Although the high level
understanding of sandboxing is common to all AVs, the implementation details might vary between different
vendors. In addition, AVs do not publicly share the inner workings of their sandboxes, so we can only guess the
capabilities of sandboxes from their whitepapers and AV settings.

Most vendors in the AV industry supply sandbox products for their business-level customers, usually as a
gateway device to be integrated into the network. Some AVs provide cloud-based sandboxes for home users
where unknown files are submitted for analysis. For example, AV6 offers its users a cloud service to analyze files
with certain extensions. With that said, we could identify that only AV1, AV2, and AV7 let users run programs
in a virtual, isolated environment on their computers. Other AVs might also have a built-in sandbox technology,
but according to our observations, they do not expose any settings, show any notifications indicating a sandbox,
nor advertise any information among the products’ features.

According to our experiments, both AV1 and AV2 execute each unknown program in a sandbox at the first
run. This automatic execution seems to be time limited, and takes around 30 s. After that, the programs are
automatically started in the host environment without the sandbox restrictions. Users can also run programs in
the sandbox without a time limit using the context menu. From program outputs and error messages, we infer
that both AVs create a virtual file system where the programs being tested cannot access the files on host, even
for reading. The programs can access to the Internet though, and the trusted files they download can be saved
outside the sandbox. Furthermore, programmatically synthesized events, such as simulated mouse clicks and
key strokes cannot reach outside the sandbox. By sleeping for 30 s in total and meanwhile performing a benign
task like printing to console, our Ghost Control prototype was found harmless by the sandbox of AV1 and AV2,
however, it was stopped by UIPI.

Differently, AV7 does not apply a time limit for the automatic sandboxing at the first run. Moreover, it allows
the programs being tested to read the actual files on the host. From the company website and program interface,
we infer that the sandbox of AV7 prevents any running application from writing to any file or registry by placing
function hooks, sending inter-process messages and window messages, or synthesizing keyboard events. The
enforcement is applied even to the processes that run with admin privileges, therefore, an unknown process’
device driver installation is also denied by the sandbox.
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Fig. 4. CAPTCHA codes generated by AV10 (left) and AV29 (right). The images in the figure are in 1:1 scale.

However, we noticed that the sandbox of AV7 is developed in such a way that mouse clicks are not filtered,
and therefore a malware can easily escape the sandbox. In other words, it could synthesize mouse clicks using
SendInput. During our experiments, even if all unknown applications were automatically run in the sandbox,
mouse events synthesized by our prototype were not filtered by the sandbox. Combined with the vulnerable GUI
of AV7, our commands received by AV7 and we could stop the real-time protection. Our conclusion from this
observation is to add a fix to the weak sandbox by including mouse events to the filtered operations, in addition
to fixing the vulnerable GUI of AV7.

8.2 Passing Human Verification

Completely Automated Public Turing Test to Tell Computers and Humans Apart (CAPTCHA) is a challenge-
response test to determine if the user is a human or not [35]. CAPTCHA is a widely adopted technology on
the Internet to distinguish humans from computers. In our experiments with 29 AVs, we identified that two AV
programs, AV10 and AV29, utilized CAPTCHA images in their program flow, as illustrated in Figure 4.

AV10 shows a CAPTCHA image and asks the code therein when Shutdown Protection menu item is clicked
(which terminates the main AV process and stops protection) to ensure that the GUI interaction is engaged by
a human, not a malware. The vendor of AV10 indicates that this measure is employed to prevent automated
shutdown by malware. However, no verification is performed when Disable Protection menu item is clicked—in
which case, the AV program continues to run, but protection service is stopped. As a result, Ghost Control could
easily disable AV10.

When testing our attack to disable AV29, during the final step of the turn-off sequence, this AV generates a
CAPTCHA image and displays on the screen to verify that the request comes from a genuine user. The user must
enter the code correctly for AV protection to be turned off. In our first try, our Ghost Control prototype failed to
turn off AV29 as it could not enter the CAPTCHA code. To overcome this limitation, we enhanced the prototype
with the ability to partially capture the screen that contains the CAPTCHA code. Next, the prototype sends the
captured image to an external user, who can solve the CAPTCHA and sends the correct CAPTCHA code back
to our prototype, which synthesizes the code to AV29, and completes the turn off sequence.

Although our method for solving CAPTCHA codes might look like a naïve and impractical solution that does
not scale, please note that cybercriminals have at least two alternatives, as follows:

• Capture the CAPTCHA image and dispatch to Command and Control (C&C) server where a CAPTCHA-
solver program is running, and return the code to the malware. The latest advancements in Machine
Learning techniques allow to develop highly accurate text-CAPTCHA solvers [38]. The CAPTCHA im-
ages shown in Figure 4 might be solved by an automated software.

• Use CAPTCHA-solver services available to solve CAPTCHAs for affordable prices with high success rates
to make the attack scalable and profitable [22].
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9 DISCUSSION

Secure composability is a well-known problem in security engineering. It challenges developers to ensure that
security properties enjoyed by individual software components are preserved when the components are put
together. It also challenges them to demonstrate that the components together give stronger security assurances
than just the mere sum of their original properties. This rarely happens in practice, and the opposite is quite
often true. Components that, when taken in isolation, offer a certain known attack surface do generate a wider
surface when integrated into a system. Intuitively this seems obvious. Components interact one another and
with other parts of the system create a dynamic with which an attacker can interact too and in ways that were
not foreseen by the designer. An attacker can, for example, uses a component as an oracle or replay its output
to impersonate it while interacting with another.

This is exactly what we have found happening to mechanisms like UIPI and AV software. They provide a
robust defense when tested individually against a certain target, but the attacks that we demonstrate in this
article show that their combination reveals new vulnerabilities. We draw two considerations from it.

First, in complex systems it is essential to control the message-flow between security critical components.
This is actually enabled by Microsoft via UIPI. It allows messages flowing from sender applications to receiver
applications only when the integrity level of the first is not less than the integrity level of the second. In prin-
ciple, UIPI enables a good defence mechanism, but the problem is that integrity levels do not reflect trust: they
merely indicate when an application runs with administrative right (high), in standard mode (medium), or in a
sandbox (low). The authority who decides which level an application takes is generally the operating system,
and sometimes the user, after a request from the application. It may be, like in the scenario that we illustrated in
Section 6, that developers do not implement that request.

This is against what Microsoft Driver Security Guidance suggests [21]: “It is important to understand that if
lower privilege callers are allowed to access the kernel, code risk is increased. [..] Following the general least privilege
security principle, configure only the minimum level of access that is required for your driver to function.” We think
that the process that controls the status of the anti-malware and AV’s kernel module should be designed to
require “high” IL. Our findings show that several anti-malware companies either failed to follow this guidance
or have misjudged the minimum level requested for their security, or did not diversify enough between kernel
and non-kernel modules.

Second, and this is linked to our finding in Section 5, relying only on integrity levels is not sufficient to
ensure system security. This does not surprise, since UIPI has been designed to protect processes, and in fact
anti-malware applications top-up their defence strategy relying on whether an application is whitelisted, that is,
trusted. Only trusted applications can, e.g., access protected files. But, our findings have revealed a dissonance
here: medium integrity level applications, like Notepad, are considered trusted and thus allowed to, e.g., access
protected files. But an application with medium integrity level, that is running with standard user rights, does
not necessarily behave in a benign manner. As we showed for the case of Notepad, medium but untrusted ap-
plications, such as malware, can have their actions looking like be trusted by using the application as a puppet;
in so doing, they can bypass the anti-malware guard.

We think that a better defence is to combine the integrity levels and the trust label used by anti-malware. We
state it as the following principle:

Security Principle 1. Messages between applications should be allowed only when the sender has at least the
same integrity level as the receiver and and the sender is at least as trusted as the receiver.

Principle 1 reminds the renowned Bell and La Padula Model on messages-flow between different security
“clearence” levels [6] (see also Reference [32]). But it is not exactly the same, since we cope with “security” instead
of confidentiality. Attempting a formalization of Principle 1, components should be classified by “security levels”,
made of two elements: the UIPI “integrity levels” (I = [admin, user, or sandbox], ordered) and the anti-virus
software’s “trust levels” (T = [digitally signed / whitelisted, not digitally signed / not whitelisted], also ordered).
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Principle 1 suggests a policy saying that an application of security level (I ,T ) should not accept messages coming
from applications of security level (I ′,T ′) when (I ′ < I ), or when (I ′ ≥ I ) but (T ′ < T ′).

In conclusion, we believe that applying Principle 1 would have prevented receiving SendInput from effect-
ing whitelisted applications that has a potential to be exploited, e.g., Notepad. One should, however, evaluate
whether this may also broke some of the existing automation software solutions. A conclusive statement about
this would require to perform a wide spread test on automation applications. It also had fostered AV vendors
to take measures not only to protect the system but also to protect their AV programs against other suppos-
edly trusted applications, in addition to conventional malware attacks against AV products. A practical fix is to
configure AV kernel module to require admin rights to be accessed. In this regard, it might be helpful to moni-
tor SendInput API and block all simulated keyboard and mouse events dispatched to AV program although the
problem of understanding whether a low-level event, such as an interrupt, has been generated by a human or not
might be difficult to solve in general. However, some vendors, in their responses to our vulnerability disclosure,
noted that “[...] With the introduction of Patch Guard it is very difficult to protect win32k.sys (which provided access
to UI functions)”. They also noted that “[...] There exist several techniques to bypass User Account Control (UAC)
to gain admin privileges; this is not a fault of the AVs and exacerbates the problem.” We agree with this remark,
although in this article, we have considered the UAC as part of the Trusted Computing Base (TCB), as otherwise
other attacks would also be possible.

10 RELATED WORK

In this section, first, we review existing attacks involving simulated inputs to perform malicious actions. Next,
we outline previous research on the security of antivirus software.

10.1 Attacks Related to Input Simulation

Input simulation is the practice of programmatically synthesizing input events, such as mouse clicks or key
strokes, which are typically performed by the user. This section describes some the most powerful existing
attack techniques that make use of input simulation.

10.1.1 Ghost Clicks. In Reference [34], Springall et al. developed a proof-of-concept malware to manipulate
votes in Estonian Internet Voting system. On infected clients, the malware simulates keyboard inputs to activate
the electronic identifier (e-ID) of voters and submit a vote in a hidden session that is invisible to the voters.

Recently, under a different threat model, in Reference [19] Maruyama et al. demonstrate a method to generate
tap events on touch screens of smart phones using electromagnetic waves. In this scenario, the victim’s device
can be forced to pair with a malicious Bluetooth device once it gets in the range of the attackers. Even if the
victim denies the pairing by choosing CANCEL in the security prompt, the attacker can alter this selection and
make the OS to recognize user input as CONNECT.

Pay-per-click advertising systems are also vulnerable to fake clicks, which is known as Click Fraud [36]. In
these systems, the advertisers get paid according to the number of clicks on advertisements. By generating
fraudulent clicks on the ads, a malicious advertiser can increase its payment.

Perhaps the attack closest to the one described in this article is Synthetic Clicks [23], credited to Patric Wardle
[12]. Exploiting a bug in macOS OS, the attacker could send programmatically-created mouse clicks events
to security prompts that would result in vertical privilege escalation. This way the attacker could cause any
damage, including retrieving all of the user’s passwords stored in the keychain. Our attacks, Cut-and-Mouse
and Ghost Control, target AVs, not OS, do not rely upon a bug in the OS, and can be used to instruct a trusted
application to perform different malicious operations.

10.1.2 Reprogramming USB Firmware. In Reference [24], Nohl et al. demonstrated that it is feasible to modify
the firmware of a USB device, for instance a USB stick, to behave like a keyboard. Known as BadUSB, this
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Table 3. Comparison of Cut-and-Mouse and Ghost Control to Relevant Attacks that Synthesize Window Messages

Characteristics Ghost Control Cut-and-Mouse Synthetic Clicks [23] Shatter Attack [29]
Exploits a Bug in OS No No Yes No
Modifies Target Process No No No Yes
Utilizes Clipboard No Yes No Yes
Requires a Text Edit Field No Yes No Yes

technique works by reprogramming the device’s firmware to type commands on the victim’s computer. When
plugged into a computer, the malicious USB device can simulate the key strokes of the user, for example, type
and execute a script that downloads and runs a malware.

10.1.3 Shatter Attack. In Reference [29], Paget describes a weakness in Windows OS that allow a process to
inject arbitrary code into another process and execute. The “shatter attack,” a term coined by Paget, works as
follows: first, the malware copies the code-to-be-injected to the clipboard. Next, it sends WM_PASTE message to
target process to paste the clipboard contents into a text field on the GUI of the target process. At this point,
the malicious code has been moved onto the memory space of the target process. To execute this code, the
malware process sends another window message, a carefully crafted WM_TIMER message, which causes a jump
to the address of the malicious code. The main difference with our attacks is the presence of the malicious code
during the injection, while with Cut-and-Mouse, we use and control a privileged application as a “puppet” to
perform various operations without injecting new code into the target process memory.

10.2 Comparison to Previous Attacks

Cut-and-Mouse and Ghost Control are two novel attacks on AVs, of which the main principle is to simulate user
commands by programmatically synthesizing mouse and keyboard events. As we reviewed above, there are other
techniques in the literature that shares similar behaviour. Table 3 illustrates the characteristics of these attacks
and compares to that of Cut-and-Mouse and Ghost Control.

First, Ghost Control attack does not require a bug to exist in the OS, instead, it targets the applications that do
not use the privileges provided by the OS, similar to Shatter Attack. In contrast, Synthetic Clicks [23] depends
on a bug in the OS. Second, differently from Shatter Attack, which performs arbitrary code execution, Ghost
Control only uses the functions exposed within the GUI of the target application. Therefore, Ghost Control leaves
no trace in memory, while Shatter Attack modifies the target process and leaves artifacts that can be detected
in the memory dumps. In a sense, Ghost Control attack can be considered as puppeteering the target application
while Shatter attack is more close to poisoning the target. That said, Ghost Control needs exact coordinates of
the screen to successfully work, while Shatter Attack is independent of the target system’s display.

Similar to Shatter Attack, Cut-and-Mouse utilizes system clipboard and needs the target application to have
a text field. However, similar to Ghost Control, the impact of Cut-and-Mouse attack is also limited to the func-
tionality of the target applications, i.e., Notepad and Paint. Consequently, Cut-and-Mouse technique is naturally
suited to damage files and, therefore, can be exploited to perform ransomware, wipeware or similar destructive
attacks.

Finally, Cut-and-Mouse and Ghost Control attacks do not require the creation of a child process or remote
thread, unlike the attacks detected by the AVs. Those attacks involve some actions, such as injecting a DLL
payload or process launching, that can be effectively monitored and analyzed by the AVs. On the contrary, we
believe that it would require more efforts to identify if a key stroke or a mouse click event—which are the only
two building blocks of our Cut-and-Mouse and Ghost Control attacks—are part of a malicious action.
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10.3 Previous Research on Security of AVs

Traditionally, AVs have been in the target of security researchers due to their incomparable importance. Since AV
vendors mostly utilize blacklisting as the main defense technique, many researchers investigated this area. For
instance, References [9] and [33] analyzed the feasibility of evade detection via obfuscation. Another significant
research topic about AVs is the implementation related vulnerabilities. To name a few examples, References [16,
17, 27, 28, 37]. That said, the discoveries in this field mostly involve the bugs in the AV software, rather than
a flaw in their design or threat model. Finally, in Reference [2], Al-Saleh and Crandall developed a technique
to determine if the target AV is up-to-date using side channel analysis, allowing the attacker to learn which
signatures exists in virus database of the victim.

11 CONCLUSIONS

AV programs have become one of the de facto computer security standards. Several companies trust AVs to pro-
tect their assets without questioning how AVs do their job. In their turn, AVs have their assumptions, we presume,
and trust their security mechanisms be solid. Sometimes, we learned, also that trust is not questioned further.
This is probably necessary in the fast-paced cat-and-mouse game in which AVs and malware are engaged, always
running one after the other; but we, as researchers, can question the robustness of certain assumptions. In par-
ticular, we questioned whether built-in whitelisted applications can undetectably be manipulated and instructed
to do harm to user files. For instance, we tried to see whether they can be used to encrypt a file’s content or
to wipe it out. We also questioned whether AV’s real-time scanning protection feature can be turned-off by a
malware that simulates mouse and keyboard events without being caught while doing so. Surprised ourselves,
we succeeded in proving that these vulnerabilities exist for quite a number of AVs. What we found is indeed
surprising in general, considering that almost all AVs have today ransomware detection modules.

The security issues we discovered reveal vulnerabilities both in the extension in which certain security mecha-
nisms are supposed to operate, and in the they way in which the interaction between the OS and the AV defences
is believed to work. The vulnerabilities we discuss in this article are therefore not implementation flaws. To give
substance to our findings, we have designed and implemented two proof-of-concept programs, Ghost Control and
Cut-and-Mouse, which are able to fully disable the real-time protection of several consumer grade AVs, and/or to
bypass their defences in protection of user files against threats like ransomware. We tested them against the cur-
rent most comprehensive list of consumer level AVs products. Not all of them are vulnerable, but for those that
are, we also speculated about possible fixes. These require software developers to have a general understanding
of what caused them. We stated that understanding in a potentially new, or at least renewed, security principle.

One could question whether such Cut-and-Mouse and Ghost Control attacks can, after all, be detected by the
human user who sees, e.g., the mouse pointer moving and clicking here and there. Perhaps, users can be puzzled.
Still they are likely not be able to react promptly to stop the attack: users are notoriously bad on implementing
security measures, because security is not their primary goal. Thus making security dependent on the user’s
reaction to something strange on her screen is fundamentally not a solution and it does not give more security
guarantees.

We have also found that Cut-and-Mouse’s and Ghost Control’s working principle, that of using mouse and
keyboard events, works even when AVs run them in a sandbox, revealing that the sheer use of a sandbox is not
sufficient to protect a system from certain malware: mouse clicks are not filtered and therefore can escape the
sandbox.

In addition, malware can perform these attacks when the user is not using the computer, e.g., through some
heuristic based on user’s activities. Thus a better mitigation solution would be aimed at understanding whether
keyboard and mouse events come from a legitimate user or whether instead they are synthesized by a (ma-
licious) program. In a sense, discerning such situation is what malware is already trying to achieve, namely,
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understanding if it is running in a sandbox, e.g., using reverse Turing tests to detect the presence (or absence) of
a human—this further reinforces the analogy of attackers and defenders are each learning from others.

Before that discernment becomes possible, OS and AV defences have to cooperate better. At the root of our
findings there is a misalignment between two different concepts: that of integrity levels used by the OS, and that
of trusted applications on which instead AV defences rely upon. They have not been conceived to work together
and, at a higher level, they have to be harmonized. This is indeed what our Principle 1 means to achieve. We will
attempt a synthesis of the two concepts by developing a proof-of-concept component that implements it, thus
creating a test-bed for the validity of Principle 1 itself, which is one of our future research works.
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